Average tree solution in multi-agent systems with network structure
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 73-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes the use of methods of differential games to find the optimal solution in a multi-agent system with a network structure. A class of differential games on cycle-free graphs is described. A characteristic function of a special form is used, which takes into account the network structure of the game. The average tree solution is considered as a cooperative optimality principle. An illustrative example is considered.
Keywords: multi-agent systems, differential games, games on networks, cooperative game, average tree solution.
@article{MGTA_2023_15_1_a2,
     author = {Anna V. Tur and Leon A. Petrosyan},
     title = {Average tree solution in multi-agent systems with network structure},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {73--89},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a2/}
}
TY  - JOUR
AU  - Anna V. Tur
AU  - Leon A. Petrosyan
TI  - Average tree solution in multi-agent systems with network structure
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 73
EP  - 89
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a2/
LA  - ru
ID  - MGTA_2023_15_1_a2
ER  - 
%0 Journal Article
%A Anna V. Tur
%A Leon A. Petrosyan
%T Average tree solution in multi-agent systems with network structure
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 73-89
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a2/
%G ru
%F MGTA_2023_15_1_a2
Anna V. Tur; Leon A. Petrosyan. Average tree solution in multi-agent systems with network structure. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 73-89. http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a2/

[1] Petrosyan L.A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik LGU, 1977, no. 4, 46–52 | Zbl

[2] Borm P.E.M., Owen G., Tijs S.H., “On the position value for communication situations”, SIAM Journal on Discrete Mathematics, 5:3 (1992), 305–320 | DOI | MR | Zbl

[3] Gillies D.B., “Solutions to general non-zero-sum games”, Contributions to the Theory of Games IV, Annals of Mathematics Studies, 40, eds. Tucker A.W., Luce R. D., Princeton University Press, Princeton, 1959, 47–85 | MR

[4] Herings J.J., van der Laan G., Talman D., “The average tree solution for cycle-free graph games”, Games and Economic Behavior, 62 (2008), 77–92 | DOI | MR | Zbl

[5] Meessen R., Communication games, Master's thesis, Department of Mathematics. University of Nijmegen, The Netherlands, 1988 (in Dutch)

[6] Petrosyan L., Yeung D., “Shapley value for differential network games: Theory and application”, Journal of Dynamics and Games, 8:2 (2021), 151–166 | DOI | MR | Zbl

[7] Petrosyan L., Yeung D., “Construction of dynamically stable solutions in differential network games”, Stability, Control and Differential Games, Proceedings, Lecture Notes in Control and Information Sciences, eds. Tarasyev A., Maksimov V., Filippova T., Springer, Cham, 2020 | MR

[8] Petrosyan L., Yeung D.W.K., Pankratova Y., “Cooperative differential games with partner sets on networks”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 3, 2021, 286–295 | DOI | MR

[9] Pontryagin L., Boltyanskii V., Gamkrelidze R., Mishchenko E., The Mathematical Theory of Optimal Processes, Interscience, New York, NY, USA, 1962 | MR | Zbl

[10] Shapley L.S., “A value for n-person games”, Contributions to the Theory of Games, v. 2, Annals of Mathematics Studies, 28, Princeton University Press, Princeton, NJ, 1953 | MR

[11] Tur A., Petrosyan L., “The core of cooperative differential games on networks”, Mathematical Optimization Theory and Operations Research, MOTOR 2022, Lecture Notes in Computer Science, 13367, eds. Pardalos P., Khachay M., Mazalov V., Springer, Cham | MR | Zbl

[12] Von Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1953 | MR | Zbl