Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2021_13_2_a2, author = {Vyacheslav V. Sushkin}, title = {Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {40--61}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a2/} }
TY - JOUR AU - Vyacheslav V. Sushkin TI - Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2021 SP - 40 EP - 61 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a2/ LA - ru ID - MGTA_2021_13_2_a2 ER -
%0 Journal Article %A Vyacheslav V. Sushkin %T Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2021 %P 40-61 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a2/ %G ru %F MGTA_2021_13_2_a2
Vyacheslav V. Sushkin. Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 2, pp. 40-61. http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a2/
[1] Vorobev N. N., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, M., 1984
[2] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985
[3] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR
[4] Lagunov V. N., Vvedenie v differentsialnye igry, Institut matematiki i kibernetiki AN Litovskoi SSR, Vilnyus, 1979 | MR
[5] Lagunov V. N., Sushkin V. V., Mnogoshagovye pozitsionnye igry $N$ lits, Tver, 1993 | MR
[6] Sushkin V. V., Neobkhodimoe i dostatochnoe uslovie dlya maksiminnoi strategii proizvolnogo igroka s terminalnoi funktsiei vyigrysha v mnogoshagovoi pozitsionnoi igre $n$ lits so strategiyami-sintezami i konechnymi mnozhestvami upravlyayuschikh vozdeistvii igrokov, Dep. v VINITI 17.01.05, No 45-V2005, Tversk. gos. u-nt, Tver, 2005, 20 pp.
[7] Sushkin V. V., “Neobkhodimoe i dostatochnoe uslovie dlya maksiminnoi strategii proizvolnogo igroka s terminalnoi funktsiei vyigrysha v mnogoshagovoi pozitsionnoi igre $N$ lits so strategiyami-sintezami i konechnymi mnozhestvami upravlyayuschikh vozdeistvii igrokov”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2009, no. 12, 103–116