Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 2, pp. 40-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-step positional game of $n$ persons with strategies-syntheses, $n\geqslant 2$, and finite sets of controlling actions of players is investigated. Sufficient condition for nondominated maximin strategy of arbitrary player, whose payoff function is terminal, has been obtained.
Keywords: noncooperative game, maximin strategy, nondominated strategy, multi-step positional game, strategy-synthesis, terminal payoff function.
@article{MGTA_2021_13_2_a2,
     author = {Vyacheslav V. Sushkin},
     title = {Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {40--61},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a2/}
}
TY  - JOUR
AU  - Vyacheslav V. Sushkin
TI  - Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 40
EP  - 61
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a2/
LA  - ru
ID  - MGTA_2021_13_2_a2
ER  - 
%0 Journal Article
%A Vyacheslav V. Sushkin
%T Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 40-61
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a2/
%G ru
%F MGTA_2021_13_2_a2
Vyacheslav V. Sushkin. Sufficient condition for nondominated maximin strategy of arbitrary player with terminal payoff function in two-step positional game of $n$ persons with strategies-syntheses and finite sets of controlling actions of players. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 2, pp. 40-61. http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a2/

[1] Vorobev N. N., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, M., 1984

[2] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985

[3] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR

[4] Lagunov V. N., Vvedenie v differentsialnye igry, Institut matematiki i kibernetiki AN Litovskoi SSR, Vilnyus, 1979 | MR

[5] Lagunov V. N., Sushkin V. V., Mnogoshagovye pozitsionnye igry $N$ lits, Tver, 1993 | MR

[6] Sushkin V. V., Neobkhodimoe i dostatochnoe uslovie dlya maksiminnoi strategii proizvolnogo igroka s terminalnoi funktsiei vyigrysha v mnogoshagovoi pozitsionnoi igre $n$ lits so strategiyami-sintezami i konechnymi mnozhestvami upravlyayuschikh vozdeistvii igrokov, Dep. v VINITI 17.01.05, No 45-V2005, Tversk. gos. u-nt, Tver, 2005, 20 pp.

[7] Sushkin V. V., “Neobkhodimoe i dostatochnoe uslovie dlya maksiminnoi strategii proizvolnogo igroka s terminalnoi funktsiei vyigrysha v mnogoshagovoi pozitsionnoi igre $N$ lits so strategiyami-sintezami i konechnymi mnozhestvami upravlyayuschikh vozdeistvii igrokov”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2009, no. 12, 103–116