On the guaranteed estimates of the area of convex subsets of compacts on a plane
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 4, pp. 112-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the problem of constructing a convex subset of the largest area in a nonconvex compact on the plane, as well as the problem of constructing a convex subset from which the Hausdorff deviation of the compact is minimal. Since, in the general case, the exact solution of these problems is impossible, the geometric difference between the convex hull of a compact and a circle of a certain radius is proposed as an acceptable replacement for the exact solution. A lower bound for the area of this geometric difference and an upper bound for the Hausdorff deviation from it of a given nonconvex compact set are obtained. As examples, we considered the problem of constructing convex subsets from an $\alpha$-set and a set with a finite Mordell concavity coefficient.
Keywords: convex set, geometric difference, Mordell concavity ratio, figure area, Hausdorff deviation.
Mots-clés : $\alpha$-set
@article{MGTA_2020_12_4_a6,
     author = {Vladimir N. Ushakov and Alexander A. Ershov},
     title = {On the guaranteed estimates of the area of convex subsets of compacts on a plane},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {112--126},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a6/}
}
TY  - JOUR
AU  - Vladimir N. Ushakov
AU  - Alexander A. Ershov
TI  - On the guaranteed estimates of the area of convex subsets of compacts on a plane
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 112
EP  - 126
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a6/
LA  - ru
ID  - MGTA_2020_12_4_a6
ER  - 
%0 Journal Article
%A Vladimir N. Ushakov
%A Alexander A. Ershov
%T On the guaranteed estimates of the area of convex subsets of compacts on a plane
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 112-126
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a6/
%G ru
%F MGTA_2020_12_4_a6
Vladimir N. Ushakov; Alexander A. Ershov. On the guaranteed estimates of the area of convex subsets of compacts on a plane. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 4, pp. 112-126. http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a6/

[1] E. M. Bronshtein, “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovremennaya matematika. Fundamentalnye napravleniya, 22, 2007, 5–37

[2] P. M. Gruber, K. G. Lekkerkerker, Geometriya chisel, Nauka, M., 2008

[3] A. A. Ershov, M. V. Pershakov, “O sootnoshenii alfa-mnozhestv s drugimi obobscheniyami vypuklykh mnozhestv”, VI Inform. shkola molodogo uchenogo, sb. nauch. tr., ed. P.P. Treskova, Tsentralnaya nauchnaya biblioteka UrO RAN, Ekaterinburg, 2018, 143–150

[4] D. N. Ibragimov, E. Yu. Portseva, “Algoritm vneshnei approksimatsii vypuklogo mnozhestva dopustimykh upravlenii dlya liskretnoi sistemy s ogranichennym upravleniem”, Modelirovanie i analiz dannykh, 2019, no. 2, 83–98

[5] G. E. Ivanov, “Slabo vypuklye mnozhestva i ikh svoistva”, Matem. zametki, 79:1 (2006), 60–86 | MR | Zbl

[6] L. D. T. Kudryavtsev, Differentsialnoe i integralnoe ischisleniya funktsii odnoi peremennoi. Ryady, 2015, Fizmatlit, M.

[7] L. S. Pontryagin, “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 1980, no. 3 (7), 307–330 | Zbl

[8] F. Preparata, M. Sheimos, Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989

[9] P. V. Semenov, “Funktsionalno paravypuklye mnozhestva”, Matem. zametki, 54:6 (1993), 74–81 | Zbl

[10] V. V. Ushakov, A. A. Ershov, M. V. Pershakov, “Ob odnom dopolnenii k otsenke L.S. Pontryagina geometricheskoi raznosti mnozhestv na ploskosti”, Izv. IMI UdGU, 54 (2019), 63–73 | Zbl

[11] V. N. Ushakov, A. A. Ershov, “Ob otsenke khausdorfova rasstoyaniya mezhdu mnozhestvom i ego vypukloi obolochkoi v evklidovykh prostranstvakh maloi razmernosti”, Tr. IMM UrO RAN, 24, no. 1, 2018, 223–235

[12] V. N. Ushakov, A. A. Uspenskii, “Teoremy ob otdelimosti-mnozhestv v evklidovom prostranstve”, Tr. IMM UrO RAN RAN, 22, no. 2, 2016, 277–291

[13] G. E. Ivanov, M. O. Golubev, “Strong and weak convexity in nonlinear differential games”, IFAC PapersOnline, 51:32 (2018), 13–18 | DOI

[14] E. Michael, “Paraconvex sets”, Math. Scand., 7:2 (1959), 312–315 | MR

[15] H. V. Ngai, J.-P. Penot, “Paraconvex functions and paraconvex sets”, Studia Mathematica, 184:1 (2008), 1–29 | DOI | MR | Zbl

[16] R. M. Starr, “Quasi-equilibria in markets with non-convex preferences”, Econometrica, 37:1 (1969), 25–38 | DOI | Zbl