Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2020_12_4_a6, author = {Vladimir N. Ushakov and Alexander A. Ershov}, title = {On the guaranteed estimates of the area of convex subsets of compacts on a plane}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {112--126}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a6/} }
TY - JOUR AU - Vladimir N. Ushakov AU - Alexander A. Ershov TI - On the guaranteed estimates of the area of convex subsets of compacts on a plane JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2020 SP - 112 EP - 126 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a6/ LA - ru ID - MGTA_2020_12_4_a6 ER -
%0 Journal Article %A Vladimir N. Ushakov %A Alexander A. Ershov %T On the guaranteed estimates of the area of convex subsets of compacts on a plane %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2020 %P 112-126 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a6/ %G ru %F MGTA_2020_12_4_a6
Vladimir N. Ushakov; Alexander A. Ershov. On the guaranteed estimates of the area of convex subsets of compacts on a plane. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 4, pp. 112-126. http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a6/
[1] E. M. Bronshtein, “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovremennaya matematika. Fundamentalnye napravleniya, 22, 2007, 5–37
[2] P. M. Gruber, K. G. Lekkerkerker, Geometriya chisel, Nauka, M., 2008
[3] A. A. Ershov, M. V. Pershakov, “O sootnoshenii alfa-mnozhestv s drugimi obobscheniyami vypuklykh mnozhestv”, VI Inform. shkola molodogo uchenogo, sb. nauch. tr., ed. P.P. Treskova, Tsentralnaya nauchnaya biblioteka UrO RAN, Ekaterinburg, 2018, 143–150
[4] D. N. Ibragimov, E. Yu. Portseva, “Algoritm vneshnei approksimatsii vypuklogo mnozhestva dopustimykh upravlenii dlya liskretnoi sistemy s ogranichennym upravleniem”, Modelirovanie i analiz dannykh, 2019, no. 2, 83–98
[5] G. E. Ivanov, “Slabo vypuklye mnozhestva i ikh svoistva”, Matem. zametki, 79:1 (2006), 60–86 | MR | Zbl
[6] L. D. T. Kudryavtsev, Differentsialnoe i integralnoe ischisleniya funktsii odnoi peremennoi. Ryady, 2015, Fizmatlit, M.
[7] L. S. Pontryagin, “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 1980, no. 3 (7), 307–330 | Zbl
[8] F. Preparata, M. Sheimos, Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989
[9] P. V. Semenov, “Funktsionalno paravypuklye mnozhestva”, Matem. zametki, 54:6 (1993), 74–81 | Zbl
[10] V. V. Ushakov, A. A. Ershov, M. V. Pershakov, “Ob odnom dopolnenii k otsenke L.S. Pontryagina geometricheskoi raznosti mnozhestv na ploskosti”, Izv. IMI UdGU, 54 (2019), 63–73 | Zbl
[11] V. N. Ushakov, A. A. Ershov, “Ob otsenke khausdorfova rasstoyaniya mezhdu mnozhestvom i ego vypukloi obolochkoi v evklidovykh prostranstvakh maloi razmernosti”, Tr. IMM UrO RAN, 24, no. 1, 2018, 223–235
[12] V. N. Ushakov, A. A. Uspenskii, “Teoremy ob otdelimosti-mnozhestv v evklidovom prostranstve”, Tr. IMM UrO RAN RAN, 22, no. 2, 2016, 277–291
[13] G. E. Ivanov, M. O. Golubev, “Strong and weak convexity in nonlinear differential games”, IFAC PapersOnline, 51:32 (2018), 13–18 | DOI
[14] E. Michael, “Paraconvex sets”, Math. Scand., 7:2 (1959), 312–315 | MR
[15] H. V. Ngai, J.-P. Penot, “Paraconvex functions and paraconvex sets”, Studia Mathematica, 184:1 (2008), 1–29 | DOI | MR | Zbl
[16] R. M. Starr, “Quasi-equilibria in markets with non-convex preferences”, Econometrica, 37:1 (1969), 25–38 | DOI | Zbl