Superadditive extension of characteristic functions for cooperative differential games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 4, pp. 40-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a constructive theorem that allows one to construct a superadditive characteristic function in a differential game based on a non-superadditive one. As an example, a differential game is considered in which the $ \delta $- and $\eta$-characteristic functions are not superadditive. An additional construction is carried out and it is shown that the obtained functions satisfy superadditivity.
Keywords: cooperative games, characteristic function, differential games, superadditivity.
@article{MGTA_2020_12_4_a3,
     author = {Ekaterina V. Gromova and Ekaterina V. Marova},
     title = {Superadditive extension of characteristic functions for cooperative differential games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {40--61},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a3/}
}
TY  - JOUR
AU  - Ekaterina V. Gromova
AU  - Ekaterina V. Marova
TI  - Superadditive extension of characteristic functions for cooperative differential games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 40
EP  - 61
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a3/
LA  - ru
ID  - MGTA_2020_12_4_a3
ER  - 
%0 Journal Article
%A Ekaterina V. Gromova
%A Ekaterina V. Marova
%T Superadditive extension of characteristic functions for cooperative differential games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 40-61
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a3/
%G ru
%F MGTA_2020_12_4_a3
Ekaterina V. Gromova; Ekaterina V. Marova. Superadditive extension of characteristic functions for cooperative differential games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 4, pp. 40-61. http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a3/

[1] E. V. Gromova, L. A. Petrosyan, “Ob odnom sposobe postroeniya kharakteristicheskoi funktsii v kooperativnykh differentsialnykh igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 7:4 (2015), 19–39 | Zbl

[2] E. V. Gromova, L. A. Petrosyan, “Silno dinamicheski ustoichivoe kooperativnoe reshenie v odnoi differentsialnoi igre upravleniya vrednymi vybrosami”, Upravlenie bolshimi sistemami, 55 (2015), 140–159

[3] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[4] V. V. Mazalov, Matematicheskaya teoriya igr i ee prilozheniya, Lan, SPb., 2010

[5] L. A. Petrosyan, E. V. Gromova, “Dvukhurovnevaya kooperatsiya v koalitsionnykh differentsialnykh igrakh”, Trudy IMM UrO RAN, 20, no. 3 (2014), 193–203

[6] L. A. Petrosyan, N. N. Danilov, Kooperativnye differentsialnye igry i ikh prilozheniya, Izd-vo Tomskogo univ., Tomsk, 1982

[7] L. A. Petrosyan, V. V. Zakharov, Matematicheskie modeli v ekologii, Izd-vo Sankt-Peterburgskogo univ., CPb, 1997 | MR

[8] L. A. Petrosyan, N. A. Zenkevich, E. V. Shevkoplyas, Teoriya igr, BKhV-Peterburg, SPb, 2012

[9] L. A. Petrosyan, Ya. B. Pankratova, “Postroenie silno-dinamicheski ustoichivykh pod'yader v differentsialnykh igrakh s predpisannoi prodolzhitelnostyu”, Trudy IMM UrO RAN, 23, no. 1 (2017), 219–227

[10] S. L. Pecherskii, E. B. Yanovskaya, Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. univers., SPb, 2004

[11] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Gos. izd-vo fiz. mat. lit., M., 1961 | MR

[12] T. Basar, “On the uniqueness of the Nash solution in linear-quadratic differential games”, International Journal of Game Theory, 5:2–3 (1976), 65–90 | DOI | MR | Zbl

[13] E. J. Dockner, S. Jorgensen, N. van Long, G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press, 2000 | MR | Zbl

[14] J. de Frutos, G. Martin-Herran, “Selection of a Markov Perfect Nash Equilibrium in a Class of Differential Games”, Dynamic Games and Applications, 8 (2018), 620–636 | DOI | MR | Zbl

[15] E. Gromova, A. Malahova, E. Marova, “On the superadditivity of a characteristic function in cooperative differential games with negative externalities”, Constructive Nonsmooth Analysis and Related Topics, 2017, 1–4

[16] E. Gromova, E. Marova, “Coalition and anti-coalition interaction in cooperative differential games”, IFAC PapersOnLine, 51:32 (2018), 479–483 | DOI

[17] E. Gromova, E. Marova, “On the characteristic function construction technique in differential games with prescribed and random duration”, Contributions to Game Theory and Management, 11 (2018), 53–65 | MR

[18] E. Gromova, E. Marova, D. Gromov, “A substitute for the classical Neumann-Morgenstern characteristic function in cooperative differential games”, Journal of Dynamics and Games, 7:2 (2020), 105–122 | DOI | MR | Zbl

[19] A. Haurie et al., Games, dynamic games, World Scientific Books, 2012 | Zbl

[20] D. Hull, Optimal Control Theory for Applications, Springer-Verlag, New York, 2003 | MR | Zbl

[21] V. Mazalov, Mathematical game theory and applications, John Wiley Sons, 2014 | MR | Zbl

[22] E. Marova, E. Gromova, P. Barsuk, A. Shagushina, “On the Effect of the Absorption Coefficient in a Differential Game of Pollution Control”, Mathematics, 8:6 (2020), 961 | DOI

[23] J. von Neumann, O. Morgenstern, Theory of Games, Economic Behavior, Princeton University Press, 1953 | MR | Zbl

[24] L. Petrosyan, E. Gromova, “S-strongly time-consistency in differential games”, Frontiers of Dynamic Games. Static Dynamic Game Theory: Foundations Applications, eds. Petrosyan L., Mazalov V., Zenkevich N., Birkhäuser, Cham, 2018, 203–217 | DOI | MR | Zbl

[25] L. Petrosjan, G. Zaccour, “Time-consistent Shapley value allocation of pollution cost reduction”, J. of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR | Zbl

[26] E. Parilina, L. Petrosyan, “On a Simplified Method of Defining Characteristic Function in Stochastic Games”, Mathematics, 8:7 (2020), 1135 | DOI

[27] P. V. Reddy, G. Zaccour, “A friendly computable characteristic function”, Mathematical Social Sciences, 82 (2016), 18–25 | DOI | MR | Zbl

[28] A. Sedakov, “Characteristic Functions in a Linear Oligopoly TU Game”, Frontiers of Dynamic Games. Static Dynamic Game Theory: Foundations Applications, eds. Petrosyan L., Mazalov V., Zenkevich N., Birkhäuser, Cham, 2018, 219–235 | DOI | MR | Zbl

[29] E. Winter, R. Aumann, “The Shapley value”, Handbook of Game Theory with Economic Applications, v. 3, 2002, 1521–2351