Linear spaces of games on the unit square with pure equilibrium points
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 3, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of all linear spaces of continuous two-person zero-sum games on the unit square with pure equilibrium points is considered. It is shown that the set contains maximal linear spaces of any finite dimension greater than three.
Keywords: zero-sum games, continuous payoff functions, pure equilibrium points, linear spaces of games, maximality.
@article{MGTA_2020_12_3_a0,
     author = {Victoria L. Kreps},
     title = {Linear spaces of games on the unit square with pure equilibrium points},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a0/}
}
TY  - JOUR
AU  - Victoria L. Kreps
TI  - Linear spaces of games on the unit square with pure equilibrium points
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 3
EP  - 18
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a0/
LA  - ru
ID  - MGTA_2020_12_3_a0
ER  - 
%0 Journal Article
%A Victoria L. Kreps
%T Linear spaces of games on the unit square with pure equilibrium points
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 3-18
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a0/
%G ru
%F MGTA_2020_12_3_a0
Victoria L. Kreps. Linear spaces of games on the unit square with pure equilibrium points. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a0/

[1] Aizeks R., Differentsialnye igry, Mir, 1967

[2] Nesh Dzh., “Beskoalitsionnye igry”, Matrichnye igry, Fizmatgiz, 1961, 205–221

[3] Sobolev A. I., “O razmernosti lineinogo prostranstva matrichnykh igr, imeyuschikh sedlovuyu tochku”, Uspekhi teorii igr, Mintis, Vilnyus, 1975, 66–68

[4] Aumann R., Maschler M., Repeated Games with Incomplete Information, The MIT Press, Cambridge, Massachusetts–London, England, 1995 | MR

[5] Harsanyi J., “Games with Incomplete Information Played by Bayesian Players”, Management Science, 14 (1968), 486–502 | DOI | MR | Zbl

[6] Kreps V., “On maximal vector spaces of finite non-cooperative games”, International Game Theory Review, 19:2 (2017) | DOI | MR | Zbl