Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2020_12_2_a3, author = {Sergey I. Dotsenko and Georgiy M. Shevchenko}, title = {Secretary problem with vanishing objects}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {63--81}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a3/} }
Sergey I. Dotsenko; Georgiy M. Shevchenko. Secretary problem with vanishing objects. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 2, pp. 63-81. http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a3/
[1] Dynkin E. B., Yushkevich A. A., Teoremy i zadachi o protsessakh Markova, Nauka, M., 1967 | MR
[2] Gusein-Zade S. M., Razborchivaya nevesta, Biblioteka «Matematicheskoe prosveschenie», M., 2003, 24 pp.
[3] Gusein-Zade S. M., “Zadacha vybora i optimalnoe pravilo ostanovki posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatnostei i ee primeneniya, 11:3 (1966), 534–537
[4] Dotsenko S. I., Zakusilo O. K., “Zadacha optimalnogo vybora s «zaminirovannymi» ob'ektami”, Kibernetika i vychislitelnaya tekhnika, 2012, no. 170, 51–58
[5] Mazalov V. V., Matematicheskaya teoriya igr i prilozheniya, Lan, SPb., 2010
[6] Peshkov N. V., Svoistva optimalnogo momenta ostanovki v zadache nailuchshego vybora, Dissertatsiya na soisk. uch. step. kand. f.-m.n., Petrozavodsk, 2003 | Zbl
[7] Presman E. L., Sonin I. M., “Zadacha nailuchshego vybora pri sluchainom chisle ob'ektov”, Teoriya veroyatnostei i ee primeneniya, 17:4 (1972), 695–706 | Zbl
[8] Samuel-Cahn E., “The best-choice secretary problem with random freeze on jobs”, Stochastic Processes and their Applications, 55 (1995), 315–327 | DOI | MR | Zbl