Game-theory models of binary collective behavior
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 2, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Game-theoretic models were investigated not from the point of view of the maxima of the players' utility functions, as is usually done, but by solving algebraic equations that characterize the Nash equilibrium. This characterization is obtained for models of binary collective behavior, in which players choose one of two possible strategies. Based on the results for the general model, game-theoretic models of conformal threshold Binary Collective Behavior (BCB) are studied, provided the collective is divided into $ L $ groups. The conditions for the existence of Nash equilibria is proved. For each Nash equilibrium, its structure is defined. The results obtained are illustrated by two examples of conformal threshold BCB when the group coincides with the whole team and when the latter is divided into two groups. It is shown that the Nash equilibria in the first and second examples are analogues of the equilibria in the dynamic models of M. Granovetter and T. Schelling, respectively.
Keywords: game-theoretic models, Nash equilibrium, binary choice, conformity, Granovetter model, Schelling model.
@article{MGTA_2020_12_2_a0,
     author = {Vladimir V. Breer},
     title = {Game-theory models of binary collective behavior},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a0/}
}
TY  - JOUR
AU  - Vladimir V. Breer
TI  - Game-theory models of binary collective behavior
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 3
EP  - 19
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a0/
LA  - ru
ID  - MGTA_2020_12_2_a0
ER  - 
%0 Journal Article
%A Vladimir V. Breer
%T Game-theory models of binary collective behavior
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 3-19
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a0/
%G ru
%F MGTA_2020_12_2_a0
Vladimir V. Breer. Game-theory models of binary collective behavior. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 2, pp. 3-19. http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a0/

[1] Breer V. V., “Teoretiko-igrovye modeli konformnogo povedeniya”, Avtomatika i telemekhanika, 2012, no. 10, 111–126 | MR | Zbl

[2] Breer V. V., Novikov D. A., “Porogovye modeli vzaimnogo strakhovaniya”, Matematicheskaya teoriya igr i ee prilozheniya, 3:4 (2011), 3–22 | Zbl

[3] Gubko M. V., Novikov D. A., Teoriya igr v upravlenii organizatsionnymi sistemami, Sinteg, M., 2002

[4] Malishevskii A. V., Kachestvennye modeli v teorii slozhnykh sistem, Fizmatlit, M., 1998

[5] Mazalov V. V., Matematicheskaya teoriya igr i ee prilozheniya, «Lan», SPb., 2017

[6] Opoitsev V. I., Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, Nauka, M., 1977

[7] Granovetter M., “Threshold Models of Collective Behavior”, American Journal of Sociology, 83:6 (1978), 1420–1443 | DOI

[8] Schelling T. C., Micromotives and Macrobehavior, Norton Company, New York–London, 2006