Dynamic multicriteria games' solutions: classical and untraditional approaches
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the approaches to obtain an optimal behavior in dynamic multicriteria games are constructed. Classical scheme with weighted sum of the criteria and new conceptions of optimal solutions' construction are presented. Dynamic multicriteria bioresorce management problem is considered. Parameters of the model where the equilibria obtained applying traditional or dynamic approaches coincide are obtained.
Keywords: dynamic games, equilibrium, Nash bargainig sheme
Mots-clés : multicriteria games, convolution.
@article{MGTA_2020_12_1_a1,
     author = {Anna N. Rettieva},
     title = {Dynamic multicriteria games' solutions: classical and untraditional approaches},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a1/}
}
TY  - JOUR
AU  - Anna N. Rettieva
TI  - Dynamic multicriteria games' solutions: classical and untraditional approaches
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 19
EP  - 32
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a1/
LA  - ru
ID  - MGTA_2020_12_1_a1
ER  - 
%0 Journal Article
%A Anna N. Rettieva
%T Dynamic multicriteria games' solutions: classical and untraditional approaches
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 19-32
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a1/
%G ru
%F MGTA_2020_12_1_a1
Anna N. Rettieva. Dynamic multicriteria games' solutions: classical and untraditional approaches. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a1/

[1] Mazalov V. V., Rettieva A. N., “Asimmetriya v kooperativnoi zadache upravleniya bioresursami”, Upravlenie bolshimi sistemami, 55 (2015), 280–325

[2] Rettieva A. N., “Formirovanie koalitsii v dinamicheskikh mnogokriterialnykh igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 10:2 (2018), 40–61 | Zbl

[3] Rettieva A. N., “Usloviya koalitsionnoi ustoichivosti v dinamicheskikh mnogokriterialnykh igrakh”, Tr. IMM UrO RAN, 25, no. 3, 2019, 200–216

[4] Breton M., Keoula M. Y., “A great fish war model with asymmetric players”, Ecological Economics, 97 (2014), 209–223 | DOI

[5] Mazalov V. V., Rettieva A. N., “Asymmetry in a cooperative bioresource management problem”, Game-Theoretic Models in Mathematical Ecology, Nova Science Publishers, 2015, 113–152 | MR | Zbl

[6] de-Paz A., Marin-Solano J., Navas J., “Time-Consistent Equilibria in Common Access Resource Games with Asymmetric Players Under Partial Cooperation”, Environmental Modeling Assessment, 18 (2013), 171–184 | DOI

[7] Marin-Solano J., “Group inefficiency in a common property resource game with asymmetric players”, Economics Letters, 136 (2015), 214–217 | DOI | MR | Zbl

[8] Rettieva A. N., “Multicriteria dynamic games”, International Game Theory Review, 1:19 (2017), 1750002 | DOI | MR | Zbl

[9] Rettieva A. N., “Dynamic multicriteria games with finite horizon”, Mathematics, 6:9 (2018), 156 | DOI | Zbl

[10] Rettieva A. N., “Cooperation in dynamic multicriteria games with random horizons”, J. of Global Optimization, 2018, 1–16 | MR

[11] Shapley L. S., “Equilibrium points in games with vector payoffs”, Naval Research Logistic Quarterly, 6 (1959), 57–61 | DOI | MR

[12] Sorger G., “Recursive Nash bargaining over a productive assert”, J. of Economic Dynamics Control, 30 (2006), 2637–2659 | DOI | MR | Zbl