Discrete regimes of information reception in non-antagonistic repeated game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The gain functions depend on the choices of players and time. The set of choices of the second player is changed in time according to one of some variants. The true variant is ascertained during the game. The current information about the set of choices and about partner's choices is received as sample data. An optimal discrete procedure of obtaining information is found that allows preserving the equilibrium.
Keywords: dynamic non-antagonistic game, optimum regime of the information receipt, Nash equilibrium.
@article{MGTA_2020_12_1_a0,
     author = {Elena Z. Mokhonko},
     title = {Discrete regimes of information reception in non-antagonistic repeated game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a0/}
}
TY  - JOUR
AU  - Elena Z. Mokhonko
TI  - Discrete regimes of information reception in non-antagonistic repeated game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 3
EP  - 18
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a0/
LA  - ru
ID  - MGTA_2020_12_1_a0
ER  - 
%0 Journal Article
%A Elena Z. Mokhonko
%T Discrete regimes of information reception in non-antagonistic repeated game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 3-18
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a0/
%G ru
%F MGTA_2020_12_1_a0
Elena Z. Mokhonko. Discrete regimes of information reception in non-antagonistic repeated game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a0/

[1] Gorelov M.A., “Logika v issledovanii ierarkhicheskikh igr s neopredelennostyu”, Avtomatika i telemekhanika, 2017, no. 11, 137–150 | Zbl

[2] Gorelov M.A., “Ierarkhicheskaya igra s ogranicheniyami na soderzhanie i ob'em peredavaemoi informatsii”, UBS, 77 (2019), 20–46

[3] Kleimenov A.F., Neantagonisticheskie pozitsionnye differentsialnye igry, Dis. ... dokt. fiz.-matem. nauk, IMM UrO AN SSSR, Sverdlovsk, 1991, 320 pp.

[4] Kononenko A.F., “Model s nepreryvnym vremenem”, Sovremennoe sostoyanie teorii issledovaniya operatsii, Sb. nauch. tr., Nauka, M., 1976, 173–179

[5] Kononenko A.F., “O zadache nablyudeniya v povtoryayuschikhsya operatsiyakh”, Sovremennoe sostoyanie teorii issledovaniya operatsii, Sb. nauch. tr., Nauka, M., 1976, 179–172

[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[7] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[8] Mokhonko E.Z., “Povtoryayuschayasya igra s izmenyayuschimisya vozmozhnostyami igrokov”, Materialy devyatoi mezhdunarodnoi konferentsii «Upravlenie razvitiem krupnomasshtabnykh sistem», MLSD'2016 (3–5 oktyabrya 2016 g., Moskva, Rossiya, IPU RAN), v. 1, IPU RAN, M., 2016, 393–396

[9] Mokhonko E.Z., “Informatsionnye protsessy v povtoryayuschikhsya igrakh s izmenyayuschimisya mnozhestvami vybora”, VII Vserossiiskaya nauchnaya konferentsiya s mezhdunarodnym uchastiem «Matematicheskoe modelirovanie razvivayuscheisya ekonomiki, ekologii i tekhnologii», Tezisy dokladov (Moskva, 21–24 oktyabrya, 2014), FGBU VTs RAN, M., 2014, 80

[10] Mokhonko E.Z., “Povtoryayuschaya igra s izmenyayuschimsya mnozhestvom vybora vtorogo igroka”, Materialy desyatoi mezhdunarodnoi konferentsii «Upravlenie razvitiem krupnomasshtabnykh sistem», MLSD'2017 (2–4 oktyabrya 2017 g., Moskva, Rossiya, IPU RAN), v. 1, IPU RAN, M., 2017, 344–347

[11] Petrosyan L.A., Differentsialnye igry presledovaniya, LGU, L., 1987, 222 pp.

[12] Rodyukov A.V., Tarakanov A.F., “Garantirovannoe ravnovesie v ierarkhicheskoi igre s funktsiyami riska igrokov”, Trudy V Moskovskoi mezhdunarodnoi konferentsii po issledovaniyu operatsii, ORM 2007 (10–14 aprelya 2007 g., Moskva, MGU), MAKS Press, M., 2007, 287–289

[13] Chernousko F.L., Melikyan A.A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR