Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2020_12_1_a0, author = {Elena Z. Mokhonko}, title = {Discrete regimes of information reception in non-antagonistic repeated game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--18}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a0/} }
TY - JOUR AU - Elena Z. Mokhonko TI - Discrete regimes of information reception in non-antagonistic repeated game JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2020 SP - 3 EP - 18 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a0/ LA - ru ID - MGTA_2020_12_1_a0 ER -
Elena Z. Mokhonko. Discrete regimes of information reception in non-antagonistic repeated game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a0/
[1] Gorelov M.A., “Logika v issledovanii ierarkhicheskikh igr s neopredelennostyu”, Avtomatika i telemekhanika, 2017, no. 11, 137–150 | Zbl
[2] Gorelov M.A., “Ierarkhicheskaya igra s ogranicheniyami na soderzhanie i ob'em peredavaemoi informatsii”, UBS, 77 (2019), 20–46
[3] Kleimenov A.F., Neantagonisticheskie pozitsionnye differentsialnye igry, Dis. ... dokt. fiz.-matem. nauk, IMM UrO AN SSSR, Sverdlovsk, 1991, 320 pp.
[4] Kononenko A.F., “Model s nepreryvnym vremenem”, Sovremennoe sostoyanie teorii issledovaniya operatsii, Sb. nauch. tr., Nauka, M., 1976, 173–179
[5] Kononenko A.F., “O zadache nablyudeniya v povtoryayuschikhsya operatsiyakh”, Sovremennoe sostoyanie teorii issledovaniya operatsii, Sb. nauch. tr., Nauka, M., 1976, 179–172
[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[7] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.
[8] Mokhonko E.Z., “Povtoryayuschayasya igra s izmenyayuschimisya vozmozhnostyami igrokov”, Materialy devyatoi mezhdunarodnoi konferentsii «Upravlenie razvitiem krupnomasshtabnykh sistem», MLSD'2016 (3–5 oktyabrya 2016 g., Moskva, Rossiya, IPU RAN), v. 1, IPU RAN, M., 2016, 393–396
[9] Mokhonko E.Z., “Informatsionnye protsessy v povtoryayuschikhsya igrakh s izmenyayuschimisya mnozhestvami vybora”, VII Vserossiiskaya nauchnaya konferentsiya s mezhdunarodnym uchastiem «Matematicheskoe modelirovanie razvivayuscheisya ekonomiki, ekologii i tekhnologii», Tezisy dokladov (Moskva, 21–24 oktyabrya, 2014), FGBU VTs RAN, M., 2014, 80
[10] Mokhonko E.Z., “Povtoryayuschaya igra s izmenyayuschimsya mnozhestvom vybora vtorogo igroka”, Materialy desyatoi mezhdunarodnoi konferentsii «Upravlenie razvitiem krupnomasshtabnykh sistem», MLSD'2017 (2–4 oktyabrya 2017 g., Moskva, Rossiya, IPU RAN), v. 1, IPU RAN, M., 2017, 344–347
[11] Petrosyan L.A., Differentsialnye igry presledovaniya, LGU, L., 1987, 222 pp.
[12] Rodyukov A.V., Tarakanov A.F., “Garantirovannoe ravnovesie v ierarkhicheskoi igre s funktsiyami riska igrokov”, Trudy V Moskovskoi mezhdunarodnoi konferentsii po issledovaniyu operatsii, ORM 2007 (10–14 aprelya 2007 g., Moskva, MGU), MAKS Press, M., 2007, 287–289
[13] Chernousko F.L., Melikyan A.A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR