A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman--Isaacs equations
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 4, pp. 87-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

A guaranteed deterministic problem setting of super-replication with discrete time is considered: the aim of hedging of a contingent claim is to ensure the coverage of possible payout under the option contract for all admissible scenarios. These scenarios are given by means of a priori given compacts, that depend on the prehistory of prices: the increments of the price at each moment of time must lie in the corresponding compacts. The absence of transaction costs is assumed; the market is considered with trading constraints. The game-theoretical interpretation implies that the corresponding Bellman–Isaacs equations holds. In the present paper we propose several conditions for the solutions of these equations to be semicontinuous or continuous.
Keywords: guaranteed estimates, deterministic price dynamics, superreplication, Bellman–Isaacs equations, multi-valued mapping, semicontinuity, continuity
Mots-clés : option, robust condition of no arbitrage.
@article{MGTA_2019_11_4_a5,
     author = {Sergey N. Smirnov},
     title = {A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the {Bellman--Isaacs} equations},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {87--115},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a5/}
}
TY  - JOUR
AU  - Sergey N. Smirnov
TI  - A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman--Isaacs equations
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2019
SP  - 87
EP  - 115
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a5/
LA  - ru
ID  - MGTA_2019_11_4_a5
ER  - 
%0 Journal Article
%A Sergey N. Smirnov
%T A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman--Isaacs equations
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2019
%P 87-115
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a5/
%G ru
%F MGTA_2019_11_4_a5
Sergey N. Smirnov. A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman--Isaacs equations. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 4, pp. 87-115. http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a5/

[1] K. Leikhtveis, Vypuklye mnozhestva, Izdatelstvo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1985

[2] E. S. Polovinkin, Mnogoznachnyi analiz i differentsialnye vklyucheniya, Izdatelstvo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 2015

[3] S. N. Smirnov, “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: model rynka, torgovye ogranicheniya, bezarbitrazhnost i uravneniya Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 10:4 (2018), 59–99 | Zbl

[4] S. N. Smirnov, “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva «bezarbitrazhnosti» rynka”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:2 (2019), 68–95 | MR | Zbl

[5] S. N. Smirnov, “Fellerovskoe perekhodnoe yadro s nositelyami mer, zadannymi mnogoznachnym otobrazheniem”, Trudy instituta matematiki i mekhaniki UrO RAN, 25, no. 1, 2019, 219–228

[6] C. Berge, Espaces topologiques: Fonctions multivoques, Collection unive., Dunod, 1959 | MR | Zbl

[7] C. Berge, Topological Spaces: including a treatment of multi-valued functions, vector spaces, and convexity, Oliver Boyd, London, 1963 | MR | Zbl

[8] H. Föllmer, A. Schied, Stochastic Finance. An Introduction in Discrete Time, 4nd edition, Walter de Gruyter, New York, 2016 | MR

[9] S. Hu, N. Papageorgiou, Handbook of Multivalued Analysis: Theory, v. I, Mathematics and Its Applications, 419, Springer, Berlin, 1997 | MR

[10] H. Kneser, “Sur un théorème fondamental de la théorie des jeux”, CR Acad. Sci. Paris, 234 (1952), 2418–2420 | MR | Zbl

[11] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970 | MR | Zbl