Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2019_11_4_a5, author = {Sergey N. Smirnov}, title = {A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the {Bellman--Isaacs} equations}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {87--115}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a5/} }
TY - JOUR AU - Sergey N. Smirnov TI - A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman--Isaacs equations JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2019 SP - 87 EP - 115 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a5/ LA - ru ID - MGTA_2019_11_4_a5 ER -
%0 Journal Article %A Sergey N. Smirnov %T A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman--Isaacs equations %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2019 %P 87-115 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a5/ %G ru %F MGTA_2019_11_4_a5
Sergey N. Smirnov. A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman--Isaacs equations. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 4, pp. 87-115. http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a5/
[1] K. Leikhtveis, Vypuklye mnozhestva, Izdatelstvo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1985
[2] E. S. Polovinkin, Mnogoznachnyi analiz i differentsialnye vklyucheniya, Izdatelstvo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 2015
[3] S. N. Smirnov, “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: model rynka, torgovye ogranicheniya, bezarbitrazhnost i uravneniya Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 10:4 (2018), 59–99 | Zbl
[4] S. N. Smirnov, “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva «bezarbitrazhnosti» rynka”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:2 (2019), 68–95 | MR | Zbl
[5] S. N. Smirnov, “Fellerovskoe perekhodnoe yadro s nositelyami mer, zadannymi mnogoznachnym otobrazheniem”, Trudy instituta matematiki i mekhaniki UrO RAN, 25, no. 1, 2019, 219–228
[6] C. Berge, Espaces topologiques: Fonctions multivoques, Collection unive., Dunod, 1959 | MR | Zbl
[7] C. Berge, Topological Spaces: including a treatment of multi-valued functions, vector spaces, and convexity, Oliver Boyd, London, 1963 | MR | Zbl
[8] H. Föllmer, A. Schied, Stochastic Finance. An Introduction in Discrete Time, 4nd edition, Walter de Gruyter, New York, 2016 | MR
[9] S. Hu, N. Papageorgiou, Handbook of Multivalued Analysis: Theory, v. I, Mathematics and Its Applications, 419, Springer, Berlin, 1997 | MR
[10] H. Kneser, “Sur un théorème fondamental de la théorie des jeux”, CR Acad. Sci. Paris, 234 (1952), 2418–2420 | MR | Zbl
[11] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970 | MR | Zbl