Feedback strategies in nonzero-sum differential game of special type
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 4, pp. 67-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the construction of universal closedloop strategies for two-person nonzero-sum differential game of a special type. The dynamics of the first player is defined by its own position and control. The dynamics of the second player is defined by its own control and position of both players. The strategies are constructed on the base of solution for a system of Hamilton–Jacobi equations. The system of Hamilton–Jacobi equations has a hierarchical type. A generalized solution for the system of Hamilton–Jacobi equations belongs to the class of multivalued maps. We show the link between values of the players and the generalized solution of the system of Hamilton–Jacobi equations.
Keywords: system of Hamilton–Jacobi equations, nonzero-sum differential game, Nash equilibrium, multivalued solutions.
@article{MGTA_2019_11_4_a4,
     author = {Ekaterina A. Kolpakova},
     title = {Feedback strategies in nonzero-sum differential game of special type},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {67--86},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a4/}
}
TY  - JOUR
AU  - Ekaterina A. Kolpakova
TI  - Feedback strategies in nonzero-sum differential game of special type
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2019
SP  - 67
EP  - 86
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a4/
LA  - ru
ID  - MGTA_2019_11_4_a4
ER  - 
%0 Journal Article
%A Ekaterina A. Kolpakova
%T Feedback strategies in nonzero-sum differential game of special type
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2019
%P 67-86
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a4/
%G ru
%F MGTA_2019_11_4_a4
Ekaterina A. Kolpakova. Feedback strategies in nonzero-sum differential game of special type. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 4, pp. 67-86. http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a4/

[1] Dzh. Varga, Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977

[2] E. A. Kolpakova, “O reshenii sistemy uravnenii Gamiltona–Yakobi spetsialnogo vida”, Tr. IMM UrO RAN, 23, no. 1 (2017), 158–170

[3] E. A. Kolpakova, “Neshevskoe ravnovesie na osnove sistemy uravnenii Gamiltona–Yakobi spetsialnogo vida”, MTIP, 9:4 (2017), 39–53 | MR | Zbl

[4] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, FIZMATLIT, M., 1974 | MR

[5] A. S. Lakhtin, A. I. Subbotin, “Minimaksnye i vyazkostnye resheniya razryvnykh uravnenii s chastnymi proizvodnymi pervogo poryadka”, Doklady RAN, 359:4 (1998), 452–455 | MR | Zbl

[6] A. I. Subbotin, Obobschennye resheniya uravnenii s chastnymi proizvodnymi pervogo poryadka: perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003

[7] N. N. Subbotina, “Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii”, Sovremennaya matematika i ee prilozheniya, 20 (2004), 1–129

[8] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer-Verlag, Berlin–Heidelberg, 2006 | MR | Zbl

[9] T. Basar, G. J. Olsder, Dynamic Noncooperative Game Theory, SIAM, Philadelphia, 1999 | MR | Zbl

[10] A. Bressan, W. Shen, “Semi-cooperative strategies for differential games”, Int. J. of Game Theory, 32 (2004), 1–33 | DOI | MR

[11] P. Cardaliaguet, S. Plaskacz, “Existence and uniqueness of a Nash equilibrium feedback for a simple nonzeo-sun differential game”, Int. J. of Game Theory, 32 (2003), 33–71 | DOI | MR | Zbl

[12] J. H. Case, “Toward a theory of many player differential games”, SIAM J. Control, 7:2 (1969), 179–197 | DOI | MR | Zbl

[13] A. Friedman, Differential Games, Wiley-Interscience, 1971 | MR | Zbl

[14] R. T. Rockafellar, R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin–Heidelberg, 1998 | MR | Zbl

[15] A. W. Starr, Y. C. Ho, “Non-zero Sum Differential Games”, J. Optim. Theory Appl., 3:3 (1969), 184–206 | DOI | MR | Zbl