Solutions for cooperative games with a~major player and a~hierarchical structure
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 3, pp. 77-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we adapt two well-known solutions for cooperative games with an exogenously given cycle-free communication graph structure (the average tree solution and the Myerson value) to the game with a major player. A comparative analysis of such solutions is carried out for special graphs — a star and a complete $k$-ary tree.
Keywords: cooperative game, tree graph, major player, the average tree solution, the Myerson value.
@article{MGTA_2019_11_3_a5,
     author = {Artem A. Sedakov and Vitaly A. Sorokin},
     title = {Solutions for cooperative games with a~major player and a~hierarchical structure},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {77--94},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_3_a5/}
}
TY  - JOUR
AU  - Artem A. Sedakov
AU  - Vitaly A. Sorokin
TI  - Solutions for cooperative games with a~major player and a~hierarchical structure
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2019
SP  - 77
EP  - 94
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2019_11_3_a5/
LA  - ru
ID  - MGTA_2019_11_3_a5
ER  - 
%0 Journal Article
%A Artem A. Sedakov
%A Vitaly A. Sorokin
%T Solutions for cooperative games with a~major player and a~hierarchical structure
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2019
%P 77-94
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2019_11_3_a5/
%G ru
%F MGTA_2019_11_3_a5
Artem A. Sedakov; Vitaly A. Sorokin. Solutions for cooperative games with a~major player and a~hierarchical structure. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 3, pp. 77-94. http://geodesic.mathdoc.fr/item/MGTA_2019_11_3_a5/

[1] Dutta B., van den Nouweland A., Tijs S., “Link formation in cooperative situations”, International Journal of Game Theory, 27 (1998), 245–256 | MR | Zbl

[2] Herings P. J. J., van der Laan G., Talman A. J. J., “The average tree solution for cycle-free graph games”, Games and Economic Behavior, 62 (2008), 77–92 | MR | Zbl

[3] Herings P. J. J., van der Laan G., Talman A. J. J., Yang Z., “The average tree solution for cooperative games with communication structure”, Games and Economic Behavior, 68 (2010), 626–633 | MR | Zbl

[4] Khmelnitskaya A., Parilina E., Sedakov A., “Endogenous Formation of Cooperation Structure in TU Games”, Frontiers of Dynamic Games. Game Theory and Management, eds. Petrosyan L., Mazalov V., Zenkevich N., St. Petersburg, 2018 ; 2019 (to appear) , Birkhäuser | MR | Zbl

[5] Muto S., Nakayama M., Potters J. A. M., Tijs S. H., “On big boss games”, The Economic Studies Quarterly, 39:4 (1988), 303–321 | MR

[6] Myerson R., “Graphs and cooperation in games”, Mathematics of Operations Research, 2 (1977), 225–229 | MR | Zbl

[7] Parilina E., Sedakov A., “Stable cooperation in graph-restricted games”, Contributions to Game Theory and Management, 7 (2014), 271–281 | MR

[8] Parilina E., Sedakov A., “Stable cooperation in a game with a major player”, International Game Theory Review, 18:2 (2016), 1640005 | MR | Zbl

[9] Shapley L., “A value for $n$-person games”, Contributions to the theory of games II, eds. Kuhn H. W., Tucker A. W., Princeton University Press, Princeton, 1953, 307–317 | MR