Dynamic models of private and public interests combining in promoting innovations
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 96-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to modeling the system of coordination of private and public interests in promoting innovations in the organization. Subjects of controls of two levels (supervisor, agents) are taken into account. The relations between subjects are hierarchical. The algorithms for constructing equilibria in the games of Germeyer $\Gamma_{1t}, \Gamma_{2t}$ and are indicated. In the study uses the method of qualitatively representative strategies. The results of a number of simulation experiments are given. An analysis of the results is given.
Keywords: Nash equilibrium, Stakelberg equilibrium, Germeier games, method of qualitatively representative strategies.
Mots-clés : simulation
@article{MGTA_2019_11_1_a4,
     author = {Gennady A. Ougolnitsky and Anatoly B. Usov},
     title = {Dynamic models of private and public interests combining in promoting innovations},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {96--114},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a4/}
}
TY  - JOUR
AU  - Gennady A. Ougolnitsky
AU  - Anatoly B. Usov
TI  - Dynamic models of private and public interests combining in promoting innovations
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2019
SP  - 96
EP  - 114
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a4/
LA  - ru
ID  - MGTA_2019_11_1_a4
ER  - 
%0 Journal Article
%A Gennady A. Ougolnitsky
%A Anatoly B. Usov
%T Dynamic models of private and public interests combining in promoting innovations
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2019
%P 96-114
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a4/
%G ru
%F MGTA_2019_11_1_a4
Gennady A. Ougolnitsky; Anatoly B. Usov. Dynamic models of private and public interests combining in promoting innovations. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 96-114. http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a4/

[1] Kuznetsova G. V., “Sovremennoe polozhenie Rossii na mirovom rynke NIOKR”, Rossiiskii vneshneekonomicheskii vestnik, 2017, no. 2, 15–23

[2] Novikov D. A., Ivaschenko A. A., Modeli i metody organizatsionnogo upravleniya innovatsionnym razvitiem firmy, Komkniga, M., 2006

[3] Novikov D. A., Teoriya upravleniya organizatsionnymi sistemami, Fizmatlit, M., 2007

[4] Ugolnitskii G. A., Usov A. B., “Teoretiko-igrovaya model soglasovaniya interesov pri innovatsionnom razvitii korporatsii”, Kompyuternye issledovaniya i modelirovanie, 8:4 (2016), 673–684 | MR

[5] Ugolnitskii G. A., Upravlenie ustoichivym razvitiem aktivnykh sistem, Izdatelstvo Yuzhnogo federalnogo universiteta, Rostov-na-Donu, 2016

[6] Ugolnitskii G. A., Usov A. B., “Dinamicheskie ierarkhicheskie igry dvukh lits v programmnykh strategiyakh i ikh prilozheniya”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2013), 82–104 | MR | Zbl

[7] Ugolnitskii G. A., Usov A. B., “Algoritmy resheniya differentsialnykh modelei ierarkhicheskikh sistem upravleniya”, Avtomatika i telemekhanika, 2016, no. 5, 148–158 | MR

[8] Dockner E., Jorgensen S., Long N. V., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, 2000 | MR | Zbl

[9] Ougolnitsky G. A., Usov A. B., “Computer Simulations as a Solution Method for Differential Games”, Computer Simulations: Advances in Research and Applications, eds. M.D. Pfeffer, E. Bachmaier, Nova Science Publishers, N.Y., 2018, 63–106