Dynamic models of private and public interests combining in promoting innovations
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 96-114
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to modeling the system of coordination of private and public interests in promoting innovations in the organization. Subjects of controls of two levels (supervisor, agents) are taken into account. The relations between subjects are hierarchical. The algorithms for constructing equilibria in the games of Germeyer $\Gamma_{1t}, \Gamma_{2t}$ and are indicated. In the study uses the method of qualitatively representative strategies. The results of a number of simulation experiments are given. An analysis of the results is given.
Keywords:
Nash equilibrium, Stakelberg equilibrium, Germeier games, method of qualitatively representative strategies.
Mots-clés : simulation
Mots-clés : simulation
@article{MGTA_2019_11_1_a4,
author = {Gennady A. Ougolnitsky and Anatoly B. Usov},
title = {Dynamic models of private and public interests combining in promoting innovations},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {96--114},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a4/}
}
TY - JOUR AU - Gennady A. Ougolnitsky AU - Anatoly B. Usov TI - Dynamic models of private and public interests combining in promoting innovations JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2019 SP - 96 EP - 114 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a4/ LA - ru ID - MGTA_2019_11_1_a4 ER -
%0 Journal Article %A Gennady A. Ougolnitsky %A Anatoly B. Usov %T Dynamic models of private and public interests combining in promoting innovations %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2019 %P 96-114 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a4/ %G ru %F MGTA_2019_11_1_a4
Gennady A. Ougolnitsky; Anatoly B. Usov. Dynamic models of private and public interests combining in promoting innovations. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 96-114. http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a4/