Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2019_11_1_a2, author = {Vladislav I. Zhukovskii and Juliya N. Zhiteneva and Juliya A. Belskikh}, title = {Pareto equilibrium of objections and counterobjections in a differential game of three persons}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {39--72}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a2/} }
TY - JOUR AU - Vladislav I. Zhukovskii AU - Juliya N. Zhiteneva AU - Juliya A. Belskikh TI - Pareto equilibrium of objections and counterobjections in a differential game of three persons JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2019 SP - 39 EP - 72 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a2/ LA - ru ID - MGTA_2019_11_1_a2 ER -
%0 Journal Article %A Vladislav I. Zhukovskii %A Juliya N. Zhiteneva %A Juliya A. Belskikh %T Pareto equilibrium of objections and counterobjections in a differential game of three persons %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2019 %P 39-72 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a2/ %G ru %F MGTA_2019_11_1_a2
Vladislav I. Zhukovskii; Juliya N. Zhiteneva; Juliya A. Belskikh. Pareto equilibrium of objections and counterobjections in a differential game of three persons. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 39-72. http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a2/
[1] Bolshoi tolkovyi slovar russkogo yazyka, Norint, Sankt-Peterburg, 2003
[2] Vaisbord E. M., “O koalitsionnykh differentsialnykh igrakh”, Differentsialnye uravneniya, 10:4 (1974), 613–623 | Zbl
[3] Vaisbord E. M., Zhukovskii V. I., Vvedenie v differentsialnye igry neskolkikh lits i ikh prilozheniya, Sovetskoe radio, M., 1980
[4] Vilkas E. I., “Formalizatsiya problemy vybora teoretiko-igrovogo kriteriya optimalnosti”, Sb. statei, Matematicheskie metody v sotsialnykh naukakh, 2, In-t matematiki i kibernetiki AN Lit. SSR, Vilnyus, 1972, 9–55 | MR
[5] Vilkas E. I., Maiminas E. Z., Resheniya: teoriya, informatsiya, modelirovanie, Radio i svyaz, M., 1981
[6] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984
[7] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004
[8] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie ugroz i kontrugroz, KRASAND, M., 2010
[9] Zhukovskii V. I., Gorbatov A. S., Kudryavtsev K. N., “Ravnovesie po Neshu i po Berzhu v odnoi lineino-kvadratichnoi igre”, Matematicheskaya teoriya igr i ee prilozheniya, 9:1 (2017), 62–94 | Zbl
[10] Zhukovskii V. I., Kudryavtsev K. N., Samsonov S. V., Vysokos M. I., Belskikh Yu. A., “Klass differentsialnykh igr, v kotorykh otsutstvuet ravnovesie po Neshu, no suschestvuet ravnovesie ugroz i kontrugroz”, Vestnik Yuzhno-Uralskogo universiteta. Seriya Matematika, Mekhanika, Fizika, 10:2 (2018), 5–21
[11] Zhukovskii V. I., Tynyanskii N. T., Ravnovesnye upravleniya mnogokriterialnykh dinamicheskikh zadach, KRASAND, M., 2010
[12] Zhukovskii V. I., Chikrii A. A., Differentsialnye uravneniya. Lineino-kvadratichnye differentsialnye igry, Uchebnoe posobie dlya VUZov, Yurait, M., 2017
[13] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1984
[14] Lyus R. D., Raifa Kh., Igry i resheniya, Inostrannaya literatura, M., 1961
[15] Mamedov M. B., “O ravnovesii po Neshu situatsii, optimalnoi po Pareto”, Izv. AN Azerbaidzhana. Seriya fiz.-tekh. nauk, 4:2 (1983), 11–17
[16] Ouen G., Teoriya igr, Mir, M., 1971
[17] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007
[18] Smolyakov E. R., Teoriya konfliktnykh ravnovesii, URSS, M., 2005
[19] Biltchev S. V., “$\varepsilon-Z$-Equilibrium in a Differential Game Described by a Parabolic System”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984, 47–52
[20] Case J. H., “A class of games having Pareto optimal Nash equilibrium”, J. Optimiz. Theory Appl., 13:3 (1974), 378–385 | DOI | MR
[21] Dochev D. T., Stojanov N. V., “Existence of $Z$-Equilibrium in a Differential Game with Delay”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984
[22] Gaidov S. D., “$Z$-Equilibrium in Stochastic Differential Game”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984 | MR
[23] Nash J., “Equillibrium points in N-person games”, Proc. Nat. Academ. Sci. USA, 36 (1950), 48–49 | DOI | MR | Zbl
[24] Nash J., “Non-cooperative games”, Annales of Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl
[25] Rashkov P. I., “Sufficient Conditions for $Z$-Equilibrium in a Differential Game in Banach Spase”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984, 91–99
[26] Tersian St. A., “On the $Z$-Equilibrium Points in a Differential Game”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984, 106–111
[27] Zhukovskii V. I., “Some Problems of Non-Antagonistic Differential Games”, Mathematical Method in Operation Research, Academy of Sciences, Bulgaria, Sofia, 1985, 103–195
[28] Zhukovskii V. I., Kudryavtsev K. N., “Coalition equilibrium in a three-person game”, 2017 Constructive Nonsmooth Analysis and Related Topics, CNSA, dedicated to the memory of V. F. Demyanov (St. Petersburg, 22–27 May 2017), 1–4
[29] Zhukovskii V. I., Salukvadze M. E., The Vector-Valued Maximin, Academic Press, N.Y. etc., 1994 | MR