Multistage games with pairwise interactions on full graph
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to multi-stage games with pairwise interactions. The case of complete graph is considered, the vertices of which are players, and the edges are the connections between them. The characteristic function is introduced and its supermodularity is proved for one stage game. A new approach for construction of characteristic function of multi-stage game is proposed, based on the use of values of characteristic functions of one stage games. On the basis of the newly constructed characteristic function, the optimality principle is introduced, which is an analogue of the Core, and its strongly time-consistency proved. The work is illustrated by an example.
Keywords: multistage games, cooperative games, pairwise interactions, characteristic function, strongly time-consistency.
@article{MGTA_2019_11_1_a0,
     author = {Maria A. Bulgakova and Leon A. Petrosyan},
     title = {Multistage games with pairwise interactions on full graph},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a0/}
}
TY  - JOUR
AU  - Maria A. Bulgakova
AU  - Leon A. Petrosyan
TI  - Multistage games with pairwise interactions on full graph
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2019
SP  - 3
EP  - 20
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a0/
LA  - ru
ID  - MGTA_2019_11_1_a0
ER  - 
%0 Journal Article
%A Maria A. Bulgakova
%A Leon A. Petrosyan
%T Multistage games with pairwise interactions on full graph
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2019
%P 3-20
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a0/
%G ru
%F MGTA_2019_11_1_a0
Maria A. Bulgakova; Leon A. Petrosyan. Multistage games with pairwise interactions on full graph. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a0/

[1] Bulgakova M. A., “Reshenie setevykh igr s poparnym vzaimodeistviem”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 14:1 (2019), 308–319

[2] Pankratova Ya. B., Petrosyan L. A., “Novaya kharakteristicheskaya funktsiya dlya mnogoshagovykh dinamicheskikh igr”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 14:4 (2018), 316–324

[3] Petrosyan L. A., Sedakov A. A., “Mnogoshagovye setevye igry s polnoi informatsiei”, Matematicheskaya teoriya igr i ee prilozheniya, 1:2 (2009), 66–81 | Zbl

[4] Acemoglua D., Ozdaglarb A., ParandehGheibib A., “Spread of (mis) information in social networks”, Games and Economic Behavior, 70:2 (2010), 194–227 | DOI | MR

[5] Bulgakova M. A., Petrosyan L. A., “About Strongly Time-Consistency of Core in the Network Game with Pairwise Interactions”, Proceedings of 2016 International Conference "Stability and Oscillations of Nonlinear Control Systems", 2016, 157–160

[6] Dyer M., Mohanaraj V., “Pairwise-Interaction Games”, ICALP, v. 1, 2011, 159–170 | MR | Zbl

[7] Kuzyutin D., Nikitina M., “Time consistent cooperative solutions for multistage games with vector payoffs”, Operations Research Letters, 45:3 (2017), 269–274 | DOI | MR | Zbl

[8] Petrosyan L. A., “Stability of solutions in n-person differential games”, Vestnik of Leningrad Univ., 1:19 (1977), 46–52

[9] Petrosyan L. A., “About new strongly time-consistency solutions in cooperative differential games”, Proceedings of the Steklov Institute of Mathematics, 1995, no. 211, 335–340 | MR | Zbl