Game equilibria and adjustment dynamics in full networks and in triangle with heterogeneous agents
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 2, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The game equilibrium in network is under consideration; in each node of this network economy is described by the simple two-period Romer model of endogenous growth with production and knowledge externalities. The sum of knowledge levels in the neighbor nodes causes an externality in the production of each node of network. The adjusting dynamics described by differential equations systems is under consideration. For the arbitrary full networks and for triangle — the full network with three types of agents who possess different productivities, — we study which equilibria are possible, and which of these equilibria are dynamically stable under different combinations of parameters of the game.
Keywords: network, game in the network, Nash equilibrium, externality, adjusting dynamics, dynamically stability, productivity, triangle, heterogeneous agents.
@article{MGTA_2018_10_2_a0,
     author = {Maria V. Garmash and Xeniya A. Kaneva},
     title = {Game equilibria and adjustment dynamics in full networks and in triangle with heterogeneous agents},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a0/}
}
TY  - JOUR
AU  - Maria V. Garmash
AU  - Xeniya A. Kaneva
TI  - Game equilibria and adjustment dynamics in full networks and in triangle with heterogeneous agents
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2018
SP  - 3
EP  - 26
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a0/
LA  - ru
ID  - MGTA_2018_10_2_a0
ER  - 
%0 Journal Article
%A Maria V. Garmash
%A Xeniya A. Kaneva
%T Game equilibria and adjustment dynamics in full networks and in triangle with heterogeneous agents
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2018
%P 3-26
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a0/
%G ru
%F MGTA_2018_10_2_a0
Maria V. Garmash; Xeniya A. Kaneva. Game equilibria and adjustment dynamics in full networks and in triangle with heterogeneous agents. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 2, pp. 3-26. http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a0/

[1] Acemoglu D., Robinson J. A., Why nations fall: The origins of power, prosperity, and poverty, Crown Publishers, New York, 2012

[2] Ballester C., Calvo-Armengol A., Zenou Y., “Who's who in networks. Wanted: the key player”, Econometrica, 74:5 (2006), 1403–1417 | DOI | MR | Zbl

[3] Bramoullé Y., Kranton R., “Public goods in networks”, Journal of Economic Theory, 135 (2007), 478–494 | DOI | MR | Zbl

[4] Bramoullé Y., Kranton R., D'Amours M., “Strategic interaction and networks”, American Economic Review, 104:3 (2014), 898–930 | DOI

[5] Galeotti A., Goyal S., Jackson M. O., Vega-Redondo F., Yariv L., “Network games”, Review of Economic Studies, 77 (2010), 218–244 | DOI | MR | Zbl

[6] Goyal S., Connections: An introductions to the economics of networks, Princeton University Press, Princeton, 2010 | MR

[7] Jackson M. O., Social and Economic Networks, Princeton University Press, 2008 | MR | Zbl

[8] Jackson M. O., Zenou Y., “Games on networks”, Handbook of game theory, v. 4, eds. Young P., Zamir S., Elsevier Science, Amsterdam, 2014, 95–163 | MR

[9] Lucas R., “On the mechanics of economic development”, J. Monet. Econ., 2:1 (1988), 3–42 | DOI

[10] Martemyanov Y. P., Matveenko V. D., “On the dependence of the growth rate on the elasticity of substitution in a network”, International Journal of Process Management and Benchmarking, 4:4 (2014), 475–492 | DOI

[11] Matveenko V. D., Korolev A. V., “Network game with production and knowledge externalities”, Contributions to Game Theory and Management, 2015, 199–222 | MR

[12] Matveenko V. D., Korolev A. V., Zhdanova M. O., “Game equilibria and unification dynamics in networks with heterogeneous agents”, International Journal of Engineering Business Management, 9 (2017), 1–17 | DOI

[13] Naghizadeh P., Liu M., “Provision of Public Goods on Networks: On Existence, Uniqueness, and Centralities”, Trans. on Network Science and Engineering, 2016 (to appear)

[14] Romer P. M., “Increasing returns and long-run growth”, The Journal of Political Economy, 94 (1986), 1002–1037 | DOI