Game equilibria and transient dynamics in dyad with heterogeneous agents
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 1, pp. 40-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the development of the game model with the production and externalities of knowledge on a network with two-time periods, formulated in articles by V.D. Matveenko and A.V. Korolev. The simplest complete network with heterogeneous agents, the dyad, is considered. Agents differ in productivity. Dynamics in a dyad is considered. All possible game equilibria in the dyad and the conditions for their existence are found. Conditions for the dynamic stability of equilibria are determined.
Keywords: network, game equilibrium, heterogeneous agents, productivity
Mots-clés : dyad.
@article{MGTA_2018_10_1_a2,
     author = {Aleksey O. Kiselev and Nikolay I. Yurchenko},
     title = {Game equilibria and transient dynamics in dyad with heterogeneous agents},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {40--64},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a2/}
}
TY  - JOUR
AU  - Aleksey O. Kiselev
AU  - Nikolay I. Yurchenko
TI  - Game equilibria and transient dynamics in dyad with heterogeneous agents
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2018
SP  - 40
EP  - 64
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a2/
LA  - ru
ID  - MGTA_2018_10_1_a2
ER  - 
%0 Journal Article
%A Aleksey O. Kiselev
%A Nikolay I. Yurchenko
%T Game equilibria and transient dynamics in dyad with heterogeneous agents
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2018
%P 40-64
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a2/
%G ru
%F MGTA_2018_10_1_a2
Aleksey O. Kiselev; Nikolay I. Yurchenko. Game equilibria and transient dynamics in dyad with heterogeneous agents. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 1, pp. 40-64. http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a2/

[1] Novikov D. N., “Igry i seti”, Matematicheskaya teoriya igr i ee prilozheniya, 2:1 (2010), 107–124

[2] Bramoull Y., Kranton R., “Public goods in networks”, Journal of Economic Theory, 135 (2007), 478–494 | DOI | MR | Zbl

[3] Galeotti A., Goyal S., Jackson M. O., Vega-Redondo F., Yariv L., “Network games”, Review of Economic Studies, 77 (2010), 218–244 | DOI | MR | Zbl

[4] Granovetter M. S., “The strength of weak ties”, American Journal of Sociology, 78 (1973), 1360–1380 | DOI

[5] Jackson M. O., Social and Economic Networks, Princeton University Press, 2008 | MR | Zbl

[6] Jackson M. O., Zenou Y., “Games on networks”, Handbook of game theory, v. 4, eds. Young P., Zamir S., Elsevier Science, Amsterdam, 2014, 95–163 pp. | MR

[7] Martemyanov Y. P., Matveenko V. D., “On the dependence of the growth rate on the elasticity of substitution in a network”, International Journal of Process Management and Benchmarking, 4:4 (2014), 475–492 | DOI

[8] Matveenko V. D., Korolev A. V., “Network game with production and knowledge externalities”, Contributions to Game Theory and Management, 8 (2015), 199–222 | MR

[9] Matveenko V., Korolev A., Zhdanova M., “Game equilibria and unification dynamics in networks with heterogeneous agents”, International Journal of Engineering Business Management, 9 (2017), 1–17 | DOI

[10] Romer P. M., “Increasing returns and long-run growth”, The Journal of Political Economy, 94 (1986), 1002–1037 | DOI