@article{MGTA_2017_9_4_a2,
author = {Ekaterina A. Kolpakova},
title = {A construction of {Nash} equilibrium based on system of {Hamilton{\textendash}Jacobi} equations of special type},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {39--53},
year = {2017},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a2/}
}
TY - JOUR AU - Ekaterina A. Kolpakova TI - A construction of Nash equilibrium based on system of Hamilton–Jacobi equations of special type JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2017 SP - 39 EP - 53 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a2/ LA - ru ID - MGTA_2017_9_4_a2 ER -
Ekaterina A. Kolpakova. A construction of Nash equilibrium based on system of Hamilton–Jacobi equations of special type. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 4, pp. 39-53. http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a2/
[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi t funktsionalnymi uravneniyami, Nauka, M., 1977
[2] Lakhtin A. S., Subbotin A. I., “Minimaksnye i vyazkostnye resheniya razryvnykh uravnenii s chastnymi proizvodnymi pervogo poryadka”, Doklady Akademii Nauk, 359:4 (1998), 452–455
[3] Lakhtin A. S., Subbotin A. I., “Mnogoznachnye resheniya uravnenii s chastnymi proizvodnymi pervogo poryadka”, Matematicheskii sbornik, 189:6 (1998), 33–58 | DOI
[4] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, Sankt-Peterburg, 2012
[5] Subbotin A. I., Obobschennye resheniya uravnenii s chastnymi proizvodnymi pervogo poryadka: perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003
[6] Subbotina N. N., “Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii”, Sovremennaya matematika i ee prilozheniya, 20, 2004, 1–129
[7] Bressan A., Shen W., “Semi-cooperative strategies for differential games”, International Journal of Game Theory, 32 (2004), 1–33 | DOI | MR
[8] Cardaliaguet P., Plaskacz S., “Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game”, International Journal of Game Theory, 32 (2003), 33–71 | DOI | MR
[9] Case J. H., “Toward a theory of many player differential games”, SIAM J. Control, 7:2 (1969), 179–197 | DOI | MR
[10] Friedman A., Differential Games, Wiley-Interscience, 1971 | MR
[11] Starr A. W., Ho Y. C., “Non-zero Sum Differential Games”, Journal of Optimization Theory and Applications, 3:3 (1969), 184–206 | DOI | MR