@article{MGTA_2017_9_1_a0,
author = {Valery A. Vasil'ev},
title = {An analog of {Bondareva{\textendash}Shapley} theorem {I.} {Non-emptiness} of the core of fuzzy game},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {3--26},
year = {2017},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a0/}
}
Valery A. Vasil'ev. An analog of Bondareva–Shapley theorem I. Non-emptiness of the core of fuzzy game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a0/
[1] Bondareva O. N., “Teoriya yadra dlya igry $n$ lits”, Vestnik LGU, ser. mat., mekh., astron., 13:3 (1962), 141–142 | Zbl
[2] Vasilev V. A., Ob odnom obobschenii teoremy Skarfa o nepustote yadra, Preprint Instituta matematiki im. S. L. Soboleva SO RAN, No 283, 2012, 41 pp.
[3] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. un-ta v S.-Peterburge, SPb., 2004
[4] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973
[5] Ekland I., Elementy matematicheskoi ekonomiki, Mir, M., 1983
[6] Aubin J.-P., Optima and equilibria, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl
[7] Owen G., “Multilinear extensions of games”, Journal of Management Sciences, 18:5 (1972), 64–79 | MR
[8] Peleg B., Sudhölter P., Introduction to the theory of cooperative games, Kluwer Acad. Publ., Boston–Dordrecht–London, 2003 | MR
[9] Shapley L. S., “On balanced sets and cores”, Naval Res. Logist. Quart., 14:4 (1967), 453–460 | DOI
[10] Vasil'ev V. A., “A fuzzy-core extension of Scarf theorem and related topics”, Contributions to game theory and management, Collected papers presented on the Eight International Conference Game Theory and Management, v. VIII, eds. L. A. Petrosyan, N. A. Zenkevich, Saint Petersburg State University, SPb., 2015, 300–314 | MR