An analog of Bondareva--Shapley theorem I. Non-emptiness of the core of fuzzy game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a generalization of the famous Bondareva–Shapley theorem on the core of TU cooperative game to the case of fuzzy blocking. The approach proposed is based on the concept of balanced collection of fuzzy coalitions. Introduced by the author, this extension of the classic notion of balanced collection of standard coalitions makes it possible to present a natural analog of balanced-ness for so-called fuzzy TU cooperative games. The main result of the paper states that similar to the standard games the new balanced-ness-like assumption is a necessary and sufficient condition for the non-emptiness of the core of fuzzy TU cooperative game.
Keywords: fuzzy cooperative game, balanced family of fuzzy coalitions, $V$-balanced-ness, the core of a fuzzy game.
@article{MGTA_2017_9_1_a0,
     author = {Valery A. Vasil'ev},
     title = {An analog of {Bondareva--Shapley} theorem {I.} {Non-emptiness} of the core of fuzzy game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a0/}
}
TY  - JOUR
AU  - Valery A. Vasil'ev
TI  - An analog of Bondareva--Shapley theorem I. Non-emptiness of the core of fuzzy game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2017
SP  - 3
EP  - 26
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a0/
LA  - ru
ID  - MGTA_2017_9_1_a0
ER  - 
%0 Journal Article
%A Valery A. Vasil'ev
%T An analog of Bondareva--Shapley theorem I. Non-emptiness of the core of fuzzy game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2017
%P 3-26
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a0/
%G ru
%F MGTA_2017_9_1_a0
Valery A. Vasil'ev. An analog of Bondareva--Shapley theorem I. Non-emptiness of the core of fuzzy game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a0/

[1] Bondareva O. N., “Teoriya yadra dlya igry $n$ lits”, Vestnik LGU, ser. mat., mekh., astron., 13:3 (1962), 141–142 | Zbl

[2] Vasilev V. A., Ob odnom obobschenii teoremy Skarfa o nepustote yadra, Preprint Instituta matematiki im. S. L. Soboleva SO RAN, No 283, 2012, 41 pp.

[3] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. un-ta v S.-Peterburge, SPb., 2004

[4] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[5] Ekland I., Elementy matematicheskoi ekonomiki, Mir, M., 1983

[6] Aubin J.-P., Optima and equilibria, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl

[7] Owen G., “Multilinear extensions of games”, Journal of Management Sciences, 18:5 (1972), 64–79 | MR

[8] Peleg B., Sudhölter P., Introduction to the theory of cooperative games, Kluwer Acad. Publ., Boston–Dordrecht–London, 2003 | MR

[9] Shapley L. S., “On balanced sets and cores”, Naval Res. Logist. Quart., 14:4 (1967), 453–460 | DOI

[10] Vasil'ev V. A., “A fuzzy-core extension of Scarf theorem and related topics”, Contributions to game theory and management, Collected papers presented on the Eight International Conference Game Theory and Management, v. VIII, eds. L. A. Petrosyan, N. A. Zenkevich, Saint Petersburg State University, SPb., 2015, 300–314 | MR