Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2016_8_4_a5, author = {Ovanes L. Petrosyan and Ekaterina V. Gromova and Sergey V. Pogozhev}, title = {Strong time-consistent subset of core in cooperative differential games with finite time horizon}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {79--106}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a5/} }
TY - JOUR AU - Ovanes L. Petrosyan AU - Ekaterina V. Gromova AU - Sergey V. Pogozhev TI - Strong time-consistent subset of core in cooperative differential games with finite time horizon JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2016 SP - 79 EP - 106 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a5/ LA - ru ID - MGTA_2016_8_4_a5 ER -
%0 Journal Article %A Ovanes L. Petrosyan %A Ekaterina V. Gromova %A Sergey V. Pogozhev %T Strong time-consistent subset of core in cooperative differential games with finite time horizon %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2016 %P 79-106 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a5/ %G ru %F MGTA_2016_8_4_a5
Ovanes L. Petrosyan; Ekaterina V. Gromova; Sergey V. Pogozhev. Strong time-consistent subset of core in cooperative differential games with finite time horizon. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 4, pp. 79-106. http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a5/
[1] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M, 1985
[2] Gromova E. V., Petrosyan L. A., “Ob odnom sposobe postroeniya kharakteristicheskoi funktsii v kooperativnykh differentsialnykh igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 7:4 (2015), 19–39 | Zbl
[3] Gromova E. V., Petrosyan L. A., “Silno dinamicheski ustoichivoe kooperativnoe reshenie v odnoi differentsialnoi igre upravleniya vrednymi vybrosami”, Upravlenie bolshimi sistemami, 55 (2015), 140–159
[4] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1977, no. 19, 46–52
[5] Petrosyan L. A., “Silno dinamicheski ustoichivye differentsialnye printsipy optimalnosti”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1993, no. 4, 35–40
[6] Petrosyan L. A., Danilov N. N., “Ustoichivost reshenii neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1979, no. 1, 52–79
[7] Petrosyan O. L., “Reshenie s informatsionnoi diskriminatsiei v kooperativnykh differentsialnykh igrakh s beskonechnoi prodolzhitelnostyu”, Vestnik Leningradskogo universiteta. Seriya 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2016, 4 (to appear)
[8] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evropeiskogo un-ta v S.-Peterburge, 2004
[9] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1961
[10] Sedakov A. A., “O silnoi dinamicheskoi ustoichivosti C-yadra”, Matematicheskaya teoriya igr i ee prilozheniya, 2015, no. 2, 69–84
[11] Smirnova E., “Ustoichivaya kooperatsiya v odnoi lineino-kvadratichnoi differentsialnoi igre”, Trudy XLIV Mezhdunarodnoi nauchnoi konferentsii aspirantov i studentov «Protsessy upravleniya i ustoichivost», CPS'13, 2013, 666–672
[12] Basar T., Olsder G., Dynamic Noncooperative Game Theory, Academic Press, London, 1995 | MR | Zbl
[13] Bellman R., Dynamic Programming, Princeton University Press, Princeton, 1957 | MR | Zbl
[14] Breton M., Zaccour G., Zahaf M., “A differential game of joint implementation of environmental projects”, Automatica, 41:10 (2005), 1737–1749 | DOI | MR | Zbl
[15] Dockner E., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2001 | MR
[16] Gromova E., “The Shapley value as a sustainable cooperative solution in differential games of 3 players”, Recent Advances in Game Theory and Applications, Chapter IV, Static Dynamic Game Theory: Foundations Applications, Springer International Publishing, 2016
[17] Gromova E., Petrosyan O., “Control of Informational Horizon for Cooperative Differential Game of Pollution Control”, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (2016) | DOI
[18] Haurie A., “A note on nonzero-sum differential games with bargaining solutions”, Journal of Optimization Theory and Applications, 18:1 (1976), 31–39 | DOI | MR | Zbl
[19] Haurie A., Zaccour G., “Differential Game Models of Global Environmental Management”, Control and Game-Theoretic Models of the Environment, 2 (1995), 3–23 | DOI | MR | Zbl
[20] Petrosian O. L., “Looking Forward Approach in Cooperative Differential Games”, International Game Theory Review, 18:2 (2016) | DOI | MR | Zbl
[21] Petrosian O. L., Barabanov A. E., “Looking Forward Approach in Cooperative Differential Games with Uncertain-Stochastic Dynamics”, Journal of Optimization Theory and Applications, 172:1 (2016), 328–347 | DOI | MR
[22] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR
[23] Shapley L. S., “A Value for n-person Games”, Contributions to the Theory of Games, v. II, Annals of Mathematical Studies, 28, eds. H. W. Kuhn, A. W. Tucker, Princeton University Press, 1953, 307–317 | MR
[24] Shapley L. S., “Cores of convex games”, International Journal of Game Theory, 1971 | MR
[25] Yeung D. W. K., “An irrational-behavior-proofness condition in cooperative differential games”, Int. J. of Game Theory Rew., 9:1 (2007), 256–273