Strong time-consistent subset of core in cooperative differential games with finite time horizon
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 4, pp. 79-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Time-consistency is one of the most important properties of the solution in cooperative differential games. Core is chosen as a cooperative solution in the game. In the paper the strong time-consistent subset of the core is constructed. Construction of the subset is based upon the special class of imputation distribution procedures (IDP). For the game model of pollution control such solution is defined.
Keywords: cooperative differential games, time-consistency, strong time-consistency, imputation distribution procedure
Mots-clés : core.
@article{MGTA_2016_8_4_a5,
     author = {Ovanes L. Petrosyan and Ekaterina V. Gromova and Sergey V. Pogozhev},
     title = {Strong time-consistent subset of core in cooperative differential games with finite time horizon},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {79--106},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a5/}
}
TY  - JOUR
AU  - Ovanes L. Petrosyan
AU  - Ekaterina V. Gromova
AU  - Sergey V. Pogozhev
TI  - Strong time-consistent subset of core in cooperative differential games with finite time horizon
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 79
EP  - 106
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a5/
LA  - ru
ID  - MGTA_2016_8_4_a5
ER  - 
%0 Journal Article
%A Ovanes L. Petrosyan
%A Ekaterina V. Gromova
%A Sergey V. Pogozhev
%T Strong time-consistent subset of core in cooperative differential games with finite time horizon
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 79-106
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a5/
%G ru
%F MGTA_2016_8_4_a5
Ovanes L. Petrosyan; Ekaterina V. Gromova; Sergey V. Pogozhev. Strong time-consistent subset of core in cooperative differential games with finite time horizon. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 4, pp. 79-106. http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a5/

[1] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M, 1985

[2] Gromova E. V., Petrosyan L. A., “Ob odnom sposobe postroeniya kharakteristicheskoi funktsii v kooperativnykh differentsialnykh igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 7:4 (2015), 19–39 | Zbl

[3] Gromova E. V., Petrosyan L. A., “Silno dinamicheski ustoichivoe kooperativnoe reshenie v odnoi differentsialnoi igre upravleniya vrednymi vybrosami”, Upravlenie bolshimi sistemami, 55 (2015), 140–159

[4] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1977, no. 19, 46–52

[5] Petrosyan L. A., “Silno dinamicheski ustoichivye differentsialnye printsipy optimalnosti”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1993, no. 4, 35–40

[6] Petrosyan L. A., Danilov N. N., “Ustoichivost reshenii neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1979, no. 1, 52–79

[7] Petrosyan O. L., “Reshenie s informatsionnoi diskriminatsiei v kooperativnykh differentsialnykh igrakh s beskonechnoi prodolzhitelnostyu”, Vestnik Leningradskogo universiteta. Seriya 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2016, 4 (to appear)

[8] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evropeiskogo un-ta v S.-Peterburge, 2004

[9] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1961

[10] Sedakov A. A., “O silnoi dinamicheskoi ustoichivosti C-yadra”, Matematicheskaya teoriya igr i ee prilozheniya, 2015, no. 2, 69–84

[11] Smirnova E., “Ustoichivaya kooperatsiya v odnoi lineino-kvadratichnoi differentsialnoi igre”, Trudy XLIV Mezhdunarodnoi nauchnoi konferentsii aspirantov i studentov «Protsessy upravleniya i ustoichivost», CPS'13, 2013, 666–672

[12] Basar T., Olsder G., Dynamic Noncooperative Game Theory, Academic Press, London, 1995 | MR | Zbl

[13] Bellman R., Dynamic Programming, Princeton University Press, Princeton, 1957 | MR | Zbl

[14] Breton M., Zaccour G., Zahaf M., “A differential game of joint implementation of environmental projects”, Automatica, 41:10 (2005), 1737–1749 | DOI | MR | Zbl

[15] Dockner E., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2001 | MR

[16] Gromova E., “The Shapley value as a sustainable cooperative solution in differential games of 3 players”, Recent Advances in Game Theory and Applications, Chapter IV, Static Dynamic Game Theory: Foundations Applications, Springer International Publishing, 2016

[17] Gromova E., Petrosyan O., “Control of Informational Horizon for Cooperative Differential Game of Pollution Control”, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (2016) | DOI

[18] Haurie A., “A note on nonzero-sum differential games with bargaining solutions”, Journal of Optimization Theory and Applications, 18:1 (1976), 31–39 | DOI | MR | Zbl

[19] Haurie A., Zaccour G., “Differential Game Models of Global Environmental Management”, Control and Game-Theoretic Models of the Environment, 2 (1995), 3–23 | DOI | MR | Zbl

[20] Petrosian O. L., “Looking Forward Approach in Cooperative Differential Games”, International Game Theory Review, 18:2 (2016) | DOI | MR | Zbl

[21] Petrosian O. L., Barabanov A. E., “Looking Forward Approach in Cooperative Differential Games with Uncertain-Stochastic Dynamics”, Journal of Optimization Theory and Applications, 172:1 (2016), 328–347 | DOI | MR

[22] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR

[23] Shapley L. S., “A Value for n-person Games”, Contributions to the Theory of Games, v. II, Annals of Mathematical Studies, 28, eds. H. W. Kuhn, A. W. Tucker, Princeton University Press, 1953, 307–317 | MR

[24] Shapley L. S., “Cores of convex games”, International Journal of Game Theory, 1971 | MR

[25] Yeung D. W. K., “An irrational-behavior-proofness condition in cooperative differential games”, Int. J. of Game Theory Rew., 9:1 (2007), 256–273