Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2016_8_4_a2, author = {Vasilij V. Gusev}, title = {The vectors of {Shapley,} {Owen,} and the {Aumann--Dreze} in the game patrolling with coalition structure}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {30--42}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a2/} }
TY - JOUR AU - Vasilij V. Gusev TI - The vectors of Shapley, Owen, and the Aumann--Dreze in the game patrolling with coalition structure JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2016 SP - 30 EP - 42 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a2/ LA - ru ID - MGTA_2016_8_4_a2 ER -
%0 Journal Article %A Vasilij V. Gusev %T The vectors of Shapley, Owen, and the Aumann--Dreze in the game patrolling with coalition structure %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2016 %P 30-42 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a2/ %G ru %F MGTA_2016_8_4_a2
Vasilij V. Gusev. The vectors of Shapley, Owen, and the Aumann--Dreze in the game patrolling with coalition structure. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 4, pp. 30-42. http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a2/
[1] Gusev V. V., “Situatsiya ravnovesiya v igre patrulirovaniya na grafe”, Trudy Karelskogo nauchnogo tsentra RAN, 2015, no. 10, 28–33
[2] Gusev V. V., Mazalov V. V., “Optimalnye strategii v igre patrulirovaniya na grafe”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2015, no. 2, 61–76
[3] Mazalov V. V., Matematicheskaya teoriya igr i prilozheniya, Ucheb. posobie, Izd-vo «Lan», SPb., 2010
[4] Parilina E. M., Sedakov A. A., “Ustoichivost koalitsionnykh struktur odnoi modeli bankovskoi kooperatsii”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 4:4 (2012), 45–62
[5] Alpern S., Fokkink R., Simanjuntak M., “Optimal search and ambush for a hider who can escape the search region”, European Journal of Operational Research, 251:3 (2016), 707–714 | DOI | MR | Zbl
[6] Bachrach Y., Markakis E., Resnick E., Procaccia A. D., Rosenschein J. S., Saberi A., “Approximating power indices: theoretical and empirical analysis”, Autonomous Agents and Multi-Agent Systems, 20 (2010), 105–122 | DOI
[7] Belau J., “A Note on the Owen Value for Glove Games”, International Game Theory Review, 17:4 (2015), 1550014-1–1550014-8 | DOI | MR
[8] Garnaev A., Search Games and Other Applications of Game Theory, Springer, Heidelberg–New York, 2000 | MR | Zbl
[9] Juan J., “Vidal-Puga and Gustavo Bergantinos An implementation of the Owen value”, Games and Economic Behavior, 44:2 (2003), 412–427 | DOI | MR | Zbl
[10] Hamiache G., “A new axiomatization of the Owen value for games with coalition structures”, Mathematical Social Sciences, 37 (1999), 281–305 | DOI | MR | Zbl
[11] Khmelnitskaya A. B., Yanovskaya E. B., “Owen coalitional value without additivity axiom”, Mathematical Methods of Operations Research, 66:2 (2007), 255–261 | DOI | MR | Zbl