Minimax estimation of parameter of the negative binomial distribution
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A minimax estimation of parameter of the negative binomial distribution is considered. We derive of a numerical method for solution of the statistical game with a quadratic loss function. A minimax linear estimation is found.
Mots-clés : negative binomial distribution
Keywords: statistical game, minimax estimate, hypergeometric function, Bayes estimate.
@article{MGTA_2016_8_3_a0,
     author = {Vladimir V. Morozov and Maria A. Syrova},
     title = {Minimax estimation of parameter of the negative binomial distribution},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a0/}
}
TY  - JOUR
AU  - Vladimir V. Morozov
AU  - Maria A. Syrova
TI  - Minimax estimation of parameter of the negative binomial distribution
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 3
EP  - 19
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a0/
LA  - ru
ID  - MGTA_2016_8_3_a0
ER  - 
%0 Journal Article
%A Vladimir V. Morozov
%A Maria A. Syrova
%T Minimax estimation of parameter of the negative binomial distribution
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 3-19
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a0/
%G ru
%F MGTA_2016_8_3_a0
Vladimir V. Morozov; Maria A. Syrova. Minimax estimation of parameter of the negative binomial distribution. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a0/

[1] Blekuel D., Girshik M., Teoriya igr i statisticheskikh reshenii, Inostrannaya literatura, M., 1958

[2] Vald A., “Statisticheskie reshayuschie funktsii”, Pozitsionnye igry, Nauka, M., 1967, 300–582

[3] Vasin A. A., Morozov V. V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005

[4] Gelfand I. M., Graev M. I., Retakh V. S., “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, Uspekhi matematicheskikh nauk, 47:4 (1992), 3–82 | MR | Zbl

[5] Gren E., Statisticheskie igry i ikh primenenie, Statistika, M., 1975

[6] Dyubin G. N., “Statisticheskaya igra otsenki parametra geometricheskogo raspredeleniya”, Teoretiko-igrovye voprosy prinyatiya reshenii, Nauka, L., 1978, 124–125

[7] Leman E., Teoriya tochechnogo otsenivaniya, Nauka, M., 1991

[8] Bliss C. I., Fisher R. A., “Fitting the negative binomial distribution to biological data”, Biometrics, 9:2 (1953), 176–200 | DOI | MR

[9] Ferguson T. S., Kuo L., “Minimax estimation of a variance”, Annals of the Institute of Statistical Mathematics, 46:2 (1994), 295–308 | DOI | MR | Zbl

[10] Hodges J. L., Lehmanm E. L., “Some problems in minimax point estimation”, Annals of Mathematical Statistics, 21:2 (1950), 182–192 | DOI | MR

[11] Saha K., Paul S., “Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter”, Biometrics, 61:1 (2005), 179–185 | DOI | MR | Zbl