Optimal arrivals to a two-server loss system with random access
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 3, pp. 79-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the 2-server queuing system with loss that admits requests during a time interval $[0,T]$. Players try to send their requests to the system, that provides a random access to its servers with some probabilities, and players know these probabilities. We consider a non-cooperative game for this queueing system. Each player's strategy is a time moment to send his request to the system trying to maximize the probability of successful service obtaining. We use a symmetric Nash equilibrium as an optimality criteria. Two models are considered for this game. In the first model the number of players is deterministic. In the second it follows a Poisson distribution. We prove that there exists a unique symmetric equilibrium for both models. Also we compare numerically equilibria for different models' parameters.
Keywords: queueing system, optimal arrivals, Nash equilibrium.
@article{MGTA_2015_7_3_a3,
     author = {Julia V. Chirkova},
     title = {Optimal arrivals to a two-server loss system with random access},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {79--111},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a3/}
}
TY  - JOUR
AU  - Julia V. Chirkova
TI  - Optimal arrivals to a two-server loss system with random access
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 79
EP  - 111
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a3/
LA  - ru
ID  - MGTA_2015_7_3_a3
ER  - 
%0 Journal Article
%A Julia V. Chirkova
%T Optimal arrivals to a two-server loss system with random access
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 79-111
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a3/
%G ru
%F MGTA_2015_7_3_a3
Julia V. Chirkova. Optimal arrivals to a two-server loss system with random access. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 3, pp. 79-111. http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a3/

[1] Mazalov V. V., Chuiko Yu. V., “Nekooperativnoe ravnovesie po Neshu v zadache vybora optimalnogo momenta obrascheniya k sisteme obsluzhivaniya”, Vychislitelnye tekhnologii, 11:6 (2006), 60–71

[2] Roslyakov A. V., Tsentry obsluzhivaniya vyzovov (Call Centre), Eko-Trendz, 2002

[3] Altman E., “Applications of dynamic games in queues”, Advances in Dynamic Games, 7 (2005), 309–342 | DOI | MR | Zbl

[4] Altman E., A Markov game approach for optimal routing into a queueing network, INRIA report No 2178, 1994

[5] Altman E., Hassin R., “Non-Threshold Equilibrium for Customers Joining an $M/G/1$ Queue”, Proceedings of 10th International Symposium on Dynamic Game and Applications (2002) | MR

[6] Altman E., Jimenez T., Nunez Queija R., Yechiali U., “Optimal routing among $\cdot/M/1$ queues with partial information”, Stochastic Models, 20:2 (2004), 149–172 | DOI | MR

[7] Altman E., Koole G., “Stochastic scheduling games with Markov decision arrival processes”, Journal Computers and Mathematics with Appl., 26:6 (1993), 141–148 | DOI | MR | Zbl

[8] Altman E., Shimkin N., “Individually Optimal Dynamic Routing in a Processor Sharing System”, Operations Research, 1998, 776–784 | DOI | Zbl

[9] Glazer A., Hassin R., “Equilibrium arrivals in queues with bulk service at scheduled times”, Transportation Science, 21:4 (1987), 273–278 | DOI | MR | Zbl

[10] Glazer A., Hassin R., “$?/M/1$: On the equilibrium distribution of customer arrivals”, European Journal of Operational Research, 13:2 (1983), 146–150 | DOI | MR | Zbl

[11] Killelea P., Web Performance Tuning: Speeding Up the Web, O'Reilly Media, Inc., 2002

[12] Kopper K., The Linux Enterprise Cluster: Build a Highly Available Cluster with Commodity Hardware and Free Software, No Starch Press, 2005

[13] Ou Z., Zhuang H., Lukyanenko A., Nurminen J., Hui P., Mazalov V., Yla-Jaaski A., “Is the Same Instance Type Created Equal? Exploiting Heterogeneity of Public Clouds”, IEEE Transactions on Cloud Computing, PP:99 (2013)

[14] Ravner L., Haviv M., “Strategic timing of arrivals to a finite queue multi-server loss system”, Queueing Systems, 81:1 (2015), 71–96 | DOI | MR | Zbl

[15] Ravner L., Haviv M., “Equilibrium and socially optimal arrivals to a single server loss system”, International Conference on NETwork Games COntrol and OPtimization 2014, NetGCoop'14 (Trento, Italy, October 2014)