The pursuit-evasion game on the 1-skeleton graph of the regular polyhedron.~I
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 3, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a game between a group of $n$ pursuers and one evader moving with the same maximal speed along 1-skeleton of a given regular polyhedron. The objective of the paper consists of finding an integer $N(M)$ possessing the following property: if $n \geq N(M)$ then the group of pursuers wins while if $n N(M)$ then an evader wins. Part I of the paper is devoted to the case of polyhedrons in the space $\mathbb{R}^N$, Part II will be devoted to the case $\mathbb{R}^N$, $n\geq5$, and Part III will be devoted to the case $\mathbb{R}^4$.
Keywords: pursuit-evasion game, approach problem, evasion problem, positional strategy, counterstrategy, exact catch, regular polyhedron, graph, one-dimensional graph.
@article{MGTA_2015_7_3_a0,
     author = {Abdulla A. Azamov and Atamurat Sh. Kuchkarov and Azamat G. Holboyev},
     title = {The pursuit-evasion game on the 1-skeleton graph of the regular {polyhedron.~I}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a0/}
}
TY  - JOUR
AU  - Abdulla A. Azamov
AU  - Atamurat Sh. Kuchkarov
AU  - Azamat G. Holboyev
TI  - The pursuit-evasion game on the 1-skeleton graph of the regular polyhedron.~I
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 3
EP  - 15
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a0/
LA  - ru
ID  - MGTA_2015_7_3_a0
ER  - 
%0 Journal Article
%A Abdulla A. Azamov
%A Atamurat Sh. Kuchkarov
%A Azamat G. Holboyev
%T The pursuit-evasion game on the 1-skeleton graph of the regular polyhedron.~I
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 3-15
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a0/
%G ru
%F MGTA_2015_7_3_a0
Abdulla A. Azamov; Atamurat Sh. Kuchkarov; Azamat G. Holboyev. The pursuit-evasion game on the 1-skeleton graph of the regular polyhedron.~I. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a0/

[1] Azamov A. A., Osnovaniya teorii diskretnykh igr, Niso Poligraf, Tashkent, 2011

[2] Azamov A. A., “Nizhnyaya otsenka dlya koeffitsienta preimuschestva v zadache poiska na grafakh”, Differentsialnye uravneniya, 44:12 (2008), 1700–1703 | MR

[3] Distel R., Teoriya grafov, Izdatelstvo Instituta matematiki, Novosibirsk, 2002

[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985

[5] Petrosyan L. A., Zenkevich N. A., Optimalnyi poisk v usloviyakh konflikta, Izd-vo LGU, L., 1987

[6] Pontryagin L. S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988

[7] Pshenichnyi B. N., “Struktura differentsialnykh igr”, Dokl. AN SSSR, 184:2 (1969), 285–287 | MR | Zbl

[8] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[9] Aigner M., Fromme M., “A game of cops and robbers”, Discrete Appl. Math., 1984, no. 8, 1–11 | DOI | MR | Zbl

[10] Andreae T., “Note on a pursuit game played on graphs”, Discrete Appl. Math., 1984, no. 9, 111–115 | DOI | MR | Zbl

[11] Elliot P. J., Kalton N. J., “The existence of value in games”, Memoirs of the AMS, 126, Paris, 1972 | Zbl

[12] Fleming W. H., “The convergence problem for differential games”, J. Math. Anal. and Appl., 3:3 (1961), 102–116 | DOI | MR | Zbl

[13] Fomin F. V., Golovach P. A., Petrov N. N., “Search problems on 1-skeletons of regular polyhedrons”, Int. J. Math. Game Theory and Algebra, 1988, no. 7, 101–111 | MR

[14] Fomin F. V., Thilikos D. M., “An annotated bibliography on guaranteed graph searching”, Theoretical Computer Science, 399 (2008), 236–245 | DOI | MR | Zbl

[15] Friedman A., Differential Games, John and Wiley, New York, 1971 | MR | Zbl

[16] Isaacs R., Differential Games, John and Wiley, NY, 1971

[17] Nowakowski R., Winkler P., “Vertex-to-vertex pursuit in a graph”, Discrete Math., 43 (1983), 235–239 | DOI | MR | Zbl

[18] Petrosjan L. A., Differential Games of Pursuit, World Scientific Publisher, 1993 | MR

[19] Quilliot A., “Some results about pursuit games on metric spaces obtained through graph theory techniques”, Eur. J. Comb., 7:1 (1986), 55–66 | DOI | MR | Zbl