Price of anarchy and control mechanisms in models of concordance of public and private interests
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 50-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to investigate price anarchy in models of concordance of public and private interests based on Germeyer–Vatel idea. To describe agent's interests we use linear convolution of private activity revenue and some share of public activity revenue. Private and public interests are described by production functions. Control mechanisms (impulsion and compulsion) directed on improving of price of anarchy value are considered. This control problem develops the idea of meta-game synthesis.
Keywords: price of anarchy, Germeyer–Vatel model, public and private interests, administrative and economics control mechanisms.
@article{MGTA_2015_7_1_a3,
     author = {Olga I. Gorbaneva and Gennady A. Ougolnitsky},
     title = {Price of anarchy and control mechanisms in models of concordance of public and private interests},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {50--73},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a3/}
}
TY  - JOUR
AU  - Olga I. Gorbaneva
AU  - Gennady A. Ougolnitsky
TI  - Price of anarchy and control mechanisms in models of concordance of public and private interests
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 50
EP  - 73
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a3/
LA  - ru
ID  - MGTA_2015_7_1_a3
ER  - 
%0 Journal Article
%A Olga I. Gorbaneva
%A Gennady A. Ougolnitsky
%T Price of anarchy and control mechanisms in models of concordance of public and private interests
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 50-73
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a3/
%G ru
%F MGTA_2015_7_1_a3
Olga I. Gorbaneva; Gennady A. Ougolnitsky. Price of anarchy and control mechanisms in models of concordance of public and private interests. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 50-73. http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a3/

[1] Burkov V. N., Opoitsev V. I., “Metaigrovoi podkhod k upravleniyu ierarkhicheskimi sistemami”, Avtomatika i telemekhanika, 1974, no. 1, 103–114

[2] Germeier Yu. B., Vatel I. A., “Igry s ierarkhicheskim vektorom interesov”, Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1974, no. 3, 34–69

[3] Gorbaneva O. I., “Igrovye modeli raspredeleniya resursov v ierarkhicheskikh sistemakh upravleniya kachestvom rechnoi vody”, Matematicheskaya teoriya igr i ee prilozheniya, 2:1 (2010), 27–46

[4] Kleiner G. B., Proizvodstvennye funktsii: teoriya, metody, primenenie, M., 1986

[5] Kukushkin N. S., “O suschestvovanii ustoichivykh podkhodov v teoretiko-igrovoi modeli ekonomiki s obschestvennymi blagami”, Dokl. AN SSSR, 320:1 (1991), 25–28

[6] Mazalov V. V., Matematicheskaya teoriya igr i prilozheniya, «Lan», SPb., 2010

[7] Nikolenko S. I., Teoriya ekonomicheskikh protsessov, M., 2009

[8] Ugolnitskii G. A., Ierarkhicheskoe upravlenie ustoichivym razvitiem, Izd-vo fiz.-mat. lit., M., 2010

[9] N. Nisan, T. Roughgarden. E. Tardos, V. Vazirani (eds.), Algorithmic Game Theory, Cambridge University Press, 2007

[10] Gorbaneva O. I., Ougolnitsky G. A., “Purpose and Non-Purpose Resource Use Models in Two-Level Control Systems”, Advances in Systems Science and Application, 13:4 (2013), 378–390

[11] Kukushkin N. S., “A condition for Existence of Nash Eqilibrium in Games with Public and Private Objectives”, Games and Economical Behavior, 7 (1994), 177–192 | DOI

[12] Papadimitriou C. H., “Algorithms, games, and the Internet”, Proc. 33th Symposium Theory of Computing (2001), 749–753