$A$-equilibrium and fuzzy $A$-core in pure exchange model with externalities
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 15-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a concept of $A$-equilibrium being a concretization of “altruistic” Berge equilibrium adapted to the pure exchange economy with externalities, is proposed. In terms of an appropriate fuzzy domination a cooperative characterization of $A$-equilibrium allocations is given, and an analog of the classic core equivalence theorem is established.
Keywords: pure exchange model with externalities, fuzzy $A$-core, Nash equilibrium, Berge equilibrium, $A$-equilibrium.
@article{MGTA_2015_7_1_a1,
     author = {Valery A. Vasil'ev},
     title = {$A$-equilibrium and fuzzy $A$-core in pure exchange model with externalities},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {15--31},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a1/}
}
TY  - JOUR
AU  - Valery A. Vasil'ev
TI  - $A$-equilibrium and fuzzy $A$-core in pure exchange model with externalities
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 15
EP  - 31
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a1/
LA  - ru
ID  - MGTA_2015_7_1_a1
ER  - 
%0 Journal Article
%A Valery A. Vasil'ev
%T $A$-equilibrium and fuzzy $A$-core in pure exchange model with externalities
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 15-31
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a1/
%G ru
%F MGTA_2015_7_1_a1
Valery A. Vasil'ev. $A$-equilibrium and fuzzy $A$-core in pure exchange model with externalities. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 15-31. http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a1/

[1] Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsialnye igry, «Naukova Dumka», Kiev, 1994

[2] Malenvo E., Lektsii po mikroekonomicheskomu analizu, Nauka, M., 1985

[3] Arrow K. J., Hahn F. H., General Competitive Analysis, Holden-Day, San Francisco, 1971

[4] Aubin J.-P., Optima and equilibria, Springer-Verlag, Berlin–Heidelberg, 1993

[5] Berge C., Théorie Générale des Jeux à $n$ Personnes Games, Gauthiers-Villars, Paris, 1957

[6] Shubik M., “Review: The general theory of $n$-person games by Claude Berge”, Econometrica, 29:4 (1961), 821 | DOI

[7] Vasil'ev V. A., “On Edgeworth equilibria for some types of nonclassic markets”, Siberian Advances in Mathematics, 6:3 (1996), 96–150

[8] Zukovskiy V. I., Salukvadze M. E., Vaisman K. S., The Berge equilibrium, Preprint, Institute of Control Systems, Tbilisi, 1994

[9] Zukovskiy V. I., Sachkov S. N., Smirnova L. N., “Berge Equilibrium”, Analiz, modelirovanie, upravlenie, razvitie ekonomicheskikh sistem, Sbornik nauchnykh trudov VIII Mezhdunarodnoi shkoly-simpoziuma AMUR-2014 (Sevastopol, 12–21 sentyabrya, 2014), ed. A. V. Sigal, Izd-vo TNU im. V. I. Vernadskogo, Simferopol, 2014, 124–133