Bioresorce management problem with different harvesting times
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 3, pp. 54-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete-time game-theoretic model related to a bioresource management problem (fishery) is investigated. The players are countries or fishing firms that harvest the fish stock. Players differ in their time preferences, and use different discount factors. Furthermore, the players have different planning horizons. The main goal here is to construct the value function for the cooperative solution and to distribute the joint payoff among the players. We propose to use recursive Nash bargaining solution to determine cooperative behavior.
@article{MGTA_2014_6_3_a2,
     author = {Anna N. Rettieva},
     title = {Bioresorce management problem with different harvesting times},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {54--75},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_3_a2/}
}
TY  - JOUR
AU  - Anna N. Rettieva
TI  - Bioresorce management problem with different harvesting times
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 54
EP  - 75
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_3_a2/
LA  - ru
ID  - MGTA_2014_6_3_a2
ER  - 
%0 Journal Article
%A Anna N. Rettieva
%T Bioresorce management problem with different harvesting times
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 54-75
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_3_a2/
%G ru
%F MGTA_2014_6_3_a2
Anna N. Rettieva. Bioresorce management problem with different harvesting times. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 3, pp. 54-75. http://geodesic.mathdoc.fr/item/MGTA_2014_6_3_a2/

[1] Mazalov V. V., Rettieva A. N., “Diskretnaya zadacha razdeleniya bioresursov”, Prikladnaya matematika i mekhanika, 75:2 (2011), 259–270 | MR | Zbl

[2] Rettieva A. N., “Diskretnaya zadacha upravleniya bioresursami s asimmetrichnymi igrokami”, Matematicheskaya teoriya igr i ee prilozheniya, 4:4 (2012), 63–72 | Zbl

[3] Rettieva A. N., “Zadacha upravleniya bioresursami s asimmetrichnymi igrokami”, Matematicheskaya teoriya igr i ee prilozheniya, 5:3 (2013), 72–87 | Zbl

[4] Breton M., Keoula M. Y., “A great fish war model with asymmetric players”, Ecological Economics, 97 (2014), 209–223 | DOI

[5] Levhari D., Mirman L. J., “The great fish war: an example using a dynamic Cournot–Nash solution”, The Bell J. of Economics, 11:1 (1980), 322–334 | DOI | MR

[6] Marin-Solano J., Shevkoplyas E. V., “Non-constant discounting and differential games with random time horizon”, Automatica, 47 (2011), 2626–2638 | DOI | MR | Zbl

[7] Mazalov V. V., Rettieva A. N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221 (2010), 1545–1553 | DOI

[8] Mazalov V. V., Rettieva A. N., “Fish wars with many players”, International Game Theory Review, 12:4 (2010), 385–405 | DOI | MR | Zbl

[9] Shevkoplyas E. V., “The Shapley value in cooperative differential games with random duration”, Annals of the Int. Soc. of Dynamic Games, 11 (2011), 359–373 | DOI | MR | Zbl