Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2014_6_3_a2, author = {Anna N. Rettieva}, title = {Bioresorce management problem with different harvesting times}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {54--75}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_3_a2/} }
Anna N. Rettieva. Bioresorce management problem with different harvesting times. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 3, pp. 54-75. http://geodesic.mathdoc.fr/item/MGTA_2014_6_3_a2/
[1] Mazalov V. V., Rettieva A. N., “Diskretnaya zadacha razdeleniya bioresursov”, Prikladnaya matematika i mekhanika, 75:2 (2011), 259–270 | MR | Zbl
[2] Rettieva A. N., “Diskretnaya zadacha upravleniya bioresursami s asimmetrichnymi igrokami”, Matematicheskaya teoriya igr i ee prilozheniya, 4:4 (2012), 63–72 | Zbl
[3] Rettieva A. N., “Zadacha upravleniya bioresursami s asimmetrichnymi igrokami”, Matematicheskaya teoriya igr i ee prilozheniya, 5:3 (2013), 72–87 | Zbl
[4] Breton M., Keoula M. Y., “A great fish war model with asymmetric players”, Ecological Economics, 97 (2014), 209–223 | DOI
[5] Levhari D., Mirman L. J., “The great fish war: an example using a dynamic Cournot–Nash solution”, The Bell J. of Economics, 11:1 (1980), 322–334 | DOI | MR
[6] Marin-Solano J., Shevkoplyas E. V., “Non-constant discounting and differential games with random time horizon”, Automatica, 47 (2011), 2626–2638 | DOI | MR | Zbl
[7] Mazalov V. V., Rettieva A. N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221 (2010), 1545–1553 | DOI
[8] Mazalov V. V., Rettieva A. N., “Fish wars with many players”, International Game Theory Review, 12:4 (2010), 385–405 | DOI | MR | Zbl
[9] Shevkoplyas E. V., “The Shapley value in cooperative differential games with random duration”, Annals of the Int. Soc. of Dynamic Games, 11 (2011), 359–373 | DOI | MR | Zbl