@article{MGTA_2014_6_2_a1,
author = {Aleksandr I. Blagodatskikh},
title = {Problem of simple group pursuit with equal opportunities at presence defenders evader},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {32--41},
year = {2014},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a1/}
}
TY - JOUR AU - Aleksandr I. Blagodatskikh TI - Problem of simple group pursuit with equal opportunities at presence defenders evader JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2014 SP - 32 EP - 41 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a1/ LA - ru ID - MGTA_2014_6_2_a1 ER -
Aleksandr I. Blagodatskikh. Problem of simple group pursuit with equal opportunities at presence defenders evader. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 2, pp. 32-41. http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a1/
[1] Blagodatskikh A. I., “Odnovremennaya mnogokratnaya poimka v zadache prostogo presledovaniya”, Prikladnaya matematika i mekhanika, 73:1 (2009), 54–59 | MR | Zbl
[2] Blagodatskikh A. I., “Odnovremennaya mnogokratnaya poimka v konfliktno upravlyaemom protsesse”, Prikladnaya matematika i mekhanika, 77:3 (2013), 433–440 | MR | Zbl
[3] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo “Udmurt. un-t”, Izhevsk, 2009 | MR | Zbl
[4] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990
[5] Petrov N. N., “Mnogokratnaya poimka v primere Pontryagina s fazovymi ogranicheniyami”, Prikladnaya matematika i mekhanika, 61:5 (1997), 747–754 | MR | Zbl
[6] Petrosyan L. A., “Igry presledovaniya “s liniei zhizni” so mnogimi uchastnikami”, Izvestiya AN Arm. SSR. Matematika, 1:5 (1966), 331–340 | MR
[7] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146
[8] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992