Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2013_5_4_a1, author = {Sergei V. Britvin and Svetlana I. Tarashnina}, title = {Algorithms of finding the prenucleolus and the {SM-nucleolus} of cooperative {TU-games}}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {14--32}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a1/} }
TY - JOUR AU - Sergei V. Britvin AU - Svetlana I. Tarashnina TI - Algorithms of finding the prenucleolus and the SM-nucleolus of cooperative TU-games JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2013 SP - 14 EP - 32 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a1/ LA - ru ID - MGTA_2013_5_4_a1 ER -
%0 Journal Article %A Sergei V. Britvin %A Svetlana I. Tarashnina %T Algorithms of finding the prenucleolus and the SM-nucleolus of cooperative TU-games %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2013 %P 14-32 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a1/ %G ru %F MGTA_2013_5_4_a1
Sergei V. Britvin; Svetlana I. Tarashnina. Algorithms of finding the prenucleolus and the SM-nucleolus of cooperative TU-games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 14-32. http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a1/
[1] Kantorovich L. V., Matematicheskie metody organizatsii i planirovaniya proizvodstva, Izdatelstvo LGU, 1939
[2] Smirnova N. V., Tarashnina S. I., “Geometricheskie svoistva [0,1]-$N$-yadra v kooperativnykh TP-igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 4:1 (2012), 55–73 | Zbl
[3] Dantzig G. B., “Programming in a linear structure”, Econometrica, 17 (1949), 73–74 | DOI | MR
[4] Dantzig G. B., “Linear programming under uncertainty”, Management science, 1 (1955), 297–306 | DOI | MR
[5] Kohlberg E., “The nucleolus as a solution of a minimization problem”, SIAM Journal on Applied Mathematics, 23 (1972), 34–39 | DOI | MR | Zbl
[6] Maschler M., Peleg B., Shapley L. S., “Geometric properties of the kernel, nucleolus and related solution concepts”, Mathematics of operations research, 4:4 (1979), 303–338 | DOI | MR | Zbl
[7] Owen G., “A note on the nucleolus”, International journal on Game theory, 3 (1974), 101–103 | DOI | MR | Zbl
[8] Potters J. A. M., Reijnierse J. H., Ansing M., “Computing the nucleolus by solving a prolonged simplex algorithm”, Mathematics of operations research, 21:3 (1996), 757–768 | DOI | MR | Zbl
[9] Puerto J., Perea E., “Finding the nucleolus of any $n$-person cooperative game by a single linear program”, Computers and operations research, 40 (2013), 2308–2313 | DOI | MR
[10] Sankaran J. K., “On finding the nucleolus of an $n$-person cooperative game”, International Journal of Game Theory, 19:4 (1991), 329–338 | DOI | MR | Zbl
[11] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 17:6 (1969), 1163–1170 | DOI | MR | Zbl
[12] Taha H. A., Operations research: an introduction, Prentice Hall, 2006, 95–193
[13] Tarashnina S., “The simplified modified nucleolus of a cooperative TU-game”, Operations Research and Decision Theory, 19:1 (2011), 150–166 | MR | Zbl