Algorithms of finding the prenucleolus and the SM-nucleolus of cooperative TU-games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 14-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two one-pointed solutions of cooperative games with transferable utility: the prenucleolus and the SM-Nucleolus, are presented in this article. New algorithms of finding these solutions based on the procedure, described in the paper of M. Maschler, B. Peleg and L. S. Shapley, are proposed in this article. Introducing the numbering of the coalitions provides finding solution with the use of only one iteration of the procedure.
Keywords: cooperative game, effectively rational distribution, lexicographical minimum, excess, the prenucleolus, the SM-nucleolus.
Mots-clés : biexcess
@article{MGTA_2013_5_4_a1,
     author = {Sergei V. Britvin and Svetlana I. Tarashnina},
     title = {Algorithms of finding the prenucleolus and the {SM-nucleolus} of cooperative {TU-games}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {14--32},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a1/}
}
TY  - JOUR
AU  - Sergei V. Britvin
AU  - Svetlana I. Tarashnina
TI  - Algorithms of finding the prenucleolus and the SM-nucleolus of cooperative TU-games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 14
EP  - 32
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a1/
LA  - ru
ID  - MGTA_2013_5_4_a1
ER  - 
%0 Journal Article
%A Sergei V. Britvin
%A Svetlana I. Tarashnina
%T Algorithms of finding the prenucleolus and the SM-nucleolus of cooperative TU-games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 14-32
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a1/
%G ru
%F MGTA_2013_5_4_a1
Sergei V. Britvin; Svetlana I. Tarashnina. Algorithms of finding the prenucleolus and the SM-nucleolus of cooperative TU-games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 14-32. http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a1/

[1] Kantorovich L. V., Matematicheskie metody organizatsii i planirovaniya proizvodstva, Izdatelstvo LGU, 1939

[2] Smirnova N. V., Tarashnina S. I., “Geometricheskie svoistva [0,1]-$N$-yadra v kooperativnykh TP-igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 4:1 (2012), 55–73 | Zbl

[3] Dantzig G. B., “Programming in a linear structure”, Econometrica, 17 (1949), 73–74 | DOI | MR

[4] Dantzig G. B., “Linear programming under uncertainty”, Management science, 1 (1955), 297–306 | DOI | MR

[5] Kohlberg E., “The nucleolus as a solution of a minimization problem”, SIAM Journal on Applied Mathematics, 23 (1972), 34–39 | DOI | MR | Zbl

[6] Maschler M., Peleg B., Shapley L. S., “Geometric properties of the kernel, nucleolus and related solution concepts”, Mathematics of operations research, 4:4 (1979), 303–338 | DOI | MR | Zbl

[7] Owen G., “A note on the nucleolus”, International journal on Game theory, 3 (1974), 101–103 | DOI | MR | Zbl

[8] Potters J. A. M., Reijnierse J. H., Ansing M., “Computing the nucleolus by solving a prolonged simplex algorithm”, Mathematics of operations research, 21:3 (1996), 757–768 | DOI | MR | Zbl

[9] Puerto J., Perea E., “Finding the nucleolus of any $n$-person cooperative game by a single linear program”, Computers and operations research, 40 (2013), 2308–2313 | DOI | MR

[10] Sankaran J. K., “On finding the nucleolus of an $n$-person cooperative game”, International Journal of Game Theory, 19:4 (1991), 329–338 | DOI | MR | Zbl

[11] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 17:6 (1969), 1163–1170 | DOI | MR | Zbl

[12] Taha H. A., Operations research: an introduction, Prentice Hall, 2006, 95–193

[13] Tarashnina S., “The simplified modified nucleolus of a cooperative TU-game”, Operations Research and Decision Theory, 19:1 (2011), 150–166 | MR | Zbl