Equilibria in Nonantagonistic Positional Games on Graphs and Searching for Them
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We distinguish some cases of existence of a stationary equilibrium in nonantagonistic games on directed graphs with terminal payoffs along trajectories. The proof of the existence of stationary equilibria implies polynomial search algorithms for them.
Keywords: positional games, stationary equilibria
Mots-clés : polynomial algorithm.
@article{MGTA_2013_5_4_a0,
     author = {Irina A. Bashlaeva},
     title = {Equilibria in {Nonantagonistic} {Positional} {Games} on {Graphs} and {Searching} for {Them}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a0/}
}
TY  - JOUR
AU  - Irina A. Bashlaeva
TI  - Equilibria in Nonantagonistic Positional Games on Graphs and Searching for Them
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 3
EP  - 13
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a0/
LA  - ru
ID  - MGTA_2013_5_4_a0
ER  - 
%0 Journal Article
%A Irina A. Bashlaeva
%T Equilibria in Nonantagonistic Positional Games on Graphs and Searching for Them
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 3-13
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a0/
%G ru
%F MGTA_2013_5_4_a0
Irina A. Bashlaeva. Equilibria in Nonantagonistic Positional Games on Graphs and Searching for Them. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 3-13. http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a0/

[1] Gurvich V. A., Karzanov A. V., Khachiyan L. G., “Tsiklicheskie igry i nakhozhdenie minimaksnykh srednikh tsiklov v orientirovannykh grafakh”, ZhVM MF, 28:9 (1988), 1407–1417 | MR | Zbl

[2] Kun G. U., “Pozitsionnye igry i problema informatsii”, Pozitsionnye igry, eds. N. N. Vorobev, I. N. Vrublevskaya, Nauka, M., 1967, 13–40 | MR

[3] Boros E., Elbassioni K., Gurvich V., Makino K., “On Nash equilibria and improvement cycles in pure positional strategies for Chess-like and Backammon-like $n$-person games”, Discrete Mathematics, 312 (2012), 772–788 | DOI | MR | Zbl

[4] Boros E., Gurvich V., “On Nash-solvability in pure stationary strategies of finite games with perfect in formation which may have cycles”, Mathematical Social Sciences, 46 (2003), 207–224 | DOI | MR

[5] Kukushkin N. S., “Acyclicity of improvements in finite game forms”, Int. Journal of Game Theory, 40 (2011), 306–317 | MR