Mots-clés : polynomial algorithm.
@article{MGTA_2013_5_4_a0,
author = {Irina A. Bashlaeva},
title = {Equilibria in {Nonantagonistic} {Positional} {Games} on {Graphs} and {Searching} for {Them}},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {3--13},
year = {2013},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a0/}
}
Irina A. Bashlaeva. Equilibria in Nonantagonistic Positional Games on Graphs and Searching for Them. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 3-13. http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a0/
[1] Gurvich V. A., Karzanov A. V., Khachiyan L. G., “Tsiklicheskie igry i nakhozhdenie minimaksnykh srednikh tsiklov v orientirovannykh grafakh”, ZhVM MF, 28:9 (1988), 1407–1417 | MR | Zbl
[2] Kun G. U., “Pozitsionnye igry i problema informatsii”, Pozitsionnye igry, eds. N. N. Vorobev, I. N. Vrublevskaya, Nauka, M., 1967, 13–40 | MR
[3] Boros E., Elbassioni K., Gurvich V., Makino K., “On Nash equilibria and improvement cycles in pure positional strategies for Chess-like and Backammon-like $n$-person games”, Discrete Mathematics, 312 (2012), 772–788 | DOI | MR | Zbl
[4] Boros E., Gurvich V., “On Nash-solvability in pure stationary strategies of finite games with perfect in formation which may have cycles”, Mathematical Social Sciences, 46 (2003), 207–224 | DOI | MR
[5] Kukushkin N. S., “Acyclicity of improvements in finite game forms”, Int. Journal of Game Theory, 40 (2011), 306–317 | MR