On Sorger game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 115-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note is the correct version of [2, Example 6.2]. This example was devoted to Sorger game, the nonlinear modification of the Lanchester model of competition of two firms.
Keywords: Nash equilibrium, differential games, infinite horizon problem, open-loop strategy.
@article{MGTA_2013_5_3_a5,
     author = {Dmitry V. Khlopin},
     title = {On {Sorger} game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {115--119},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a5/}
}
TY  - JOUR
AU  - Dmitry V. Khlopin
TI  - On Sorger game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 115
EP  - 119
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a5/
LA  - ru
ID  - MGTA_2013_5_3_a5
ER  - 
%0 Journal Article
%A Dmitry V. Khlopin
%T On Sorger game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 115-119
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a5/
%G ru
%F MGTA_2013_5_3_a5
Dmitry V. Khlopin. On Sorger game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 115-119. http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a5/

[1] Aseev S. M., Kryazhimskii A. V., Besov K. O., “Zadachi optimalnogo upravleniya na beskonechnom promezhutke vremeni v ekonomike”, UMN, 67:2(404) (2012), 3–64 | DOI | MR | Zbl

[2] Khlopin D. V., “Neobkhodimye usloviya ravnovesiya na beskonechnom promezhutke”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2013), 105–136 | Zbl

[3] Khlopin D. V., Necessity of vanishing shadow price in infinite horizon control problems, arXiv: 1207.5358 | MR

[4] Sorger G., “Competitive dynamic advertising: A modification of the Case game”, J. Economic Dynamics and Control, 13 (1989), 55–80 | DOI | MR | Zbl