On Sorger game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 115-119
Cet article a éte moissonné depuis la source Math-Net.Ru
This note is the correct version of [2, Example 6.2]. This example was devoted to Sorger game, the nonlinear modification of the Lanchester model of competition of two firms.
Keywords:
Nash equilibrium, differential games, infinite horizon problem, open-loop strategy.
@article{MGTA_2013_5_3_a5,
author = {Dmitry V. Khlopin},
title = {On {Sorger} game},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {115--119},
year = {2013},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a5/}
}
Dmitry V. Khlopin. On Sorger game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 115-119. http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a5/
[1] Aseev S. M., Kryazhimskii A. V., Besov K. O., “Zadachi optimalnogo upravleniya na beskonechnom promezhutke vremeni v ekonomike”, UMN, 67:2(404) (2012), 3–64 | DOI | MR | Zbl
[2] Khlopin D. V., “Neobkhodimye usloviya ravnovesiya na beskonechnom promezhutke”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2013), 105–136 | Zbl
[3] Khlopin D. V., Necessity of vanishing shadow price in infinite horizon control problems, arXiv: 1207.5358 | MR
[4] Sorger G., “Competitive dynamic advertising: A modification of the Case game”, J. Economic Dynamics and Control, 13 (1989), 55–80 | DOI | MR | Zbl