About the one polynomial game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 58-71
Cet article a éte moissonné depuis la source Math-Net.Ru
Game value has been calculated and has been found by Nash player's strategies in zero-sum game in which players alternately change the coefficients of polynomial $f(x)=x^n+a_{n-1}x^{n-1}+\dots+a_1x-1$ with real numbers. One of the players is interested to maximize the number of different roots of the polynomial. The opponent has the opposite goal.
Mots-clés :
polynomial game
Keywords: Nash equilibrium, game value.
Keywords: Nash equilibrium, game value.
@article{MGTA_2013_5_3_a2,
author = {Nikolay N. Petrov},
title = {About the one polynomial game},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {58--71},
year = {2013},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a2/}
}
Nikolay N. Petrov. About the one polynomial game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 58-71. http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a2/
[1] Kudryavtsev L. D., Kurs matematicheskogo analiza, v. 1, Vyssh.shk., M., 1988 | Zbl
[2] Petrov N. N., Matematicheskie igry, Knizhnyi dom “LIBROKOM”, M., 2012 | MR
[3] Petrov N. N., Protasova E. A., “Igry s mnogochlenami”, Problemy upravleniya i informatiki, 1995, no. 6, 105–115 | MR
[4] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vyssh. shk., M., 1998 | MR | Zbl