Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2013_5_2_a0, author = {Vladislav I. Zhukovskiy and Konstantin N. Kudryavtsev}, title = {Equilibrating conflicts under uncertainty. {II.~Analogue} of a~maximin}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--45}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a0/} }
TY - JOUR AU - Vladislav I. Zhukovskiy AU - Konstantin N. Kudryavtsev TI - Equilibrating conflicts under uncertainty. II.~Analogue of a~maximin JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2013 SP - 3 EP - 45 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a0/ LA - ru ID - MGTA_2013_5_2_a0 ER -
%0 Journal Article %A Vladislav I. Zhukovskiy %A Konstantin N. Kudryavtsev %T Equilibrating conflicts under uncertainty. II.~Analogue of a~maximin %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2013 %P 3-45 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a0/ %G ru %F MGTA_2013_5_2_a0
Vladislav I. Zhukovskiy; Konstantin N. Kudryavtsev. Equilibrating conflicts under uncertainty. II.~Analogue of a~maximin. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 2, pp. 3-45. http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a0/
[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[2] Vatel I. A., Ereshko F. I., Matematika konflikta i sotrudnichestva, Znanie, M., 1973
[3] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1987 | MR
[4] Vorobev N. N., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, M., 1984 | MR
[5] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR
[6] Danford N., Shvarts Dzh. T., Lineinye operatory, v. I, Izd-vo inostr. lit-ry, M., 1962
[7] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti, Mezhdunarodnyi NII problem upravleniya, M., 1997
[8] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie po Berzhu–Vaismanu, URSS, KRASAND, M., 2010
[9] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie po Neshu, URSS, KRASAND, M., 2010
[10] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie ugroz i kontrugroz, URSS, KRASAND, M., 2010
[11] Zhukovskii V. I., Kooperativnye igry pri neopredelennosti i ikh prilozheniya, URSS, M., 1999 | MR
[12] Zhukovskii V. I., Dochev D. T., Vektornaya optimizatsiya dinamicheskikh sistem, Tsentr po Matematike, Bolgariya, Ruse, 1981
[13] Zhukovskii V. I., Zhukovskaya L. V., Risk v mnogokriterialnykh i konfliktnykh sistemakh pri neopredelennosti, Editorial URSS, M., 2004
[14] Zhukovskii V. I., Kudryavtsev K. N., “Uravnoveshivanie konfliktov pri neopredelennosti. I. Analog sedlovoi tochki”, Matematicheskaya teoriya igr i ee prilozheniya, 5:1 (2013), 27–44
[15] Zhukovskii V. I., Molostvov V. S., Mnogokriterialnaya optimizatsiya sistem v usloviyakh nepolnoi informatsii, Mezhdunarodnyi NII problem upravleniya, M., 1990
[16] Zhukovskii V. I., Molostvov V. S., Mnogokriterialnoe prinyatie reshenii v usloviyakh neopredelennosti, Mezhdunarodnyi NII problem upravleniya, M., 1988
[17] Zhukovskii V. I., Salukvadze M. E., Mnogokriterialnye zadachi upravleniya v usloviyakh neopredelennosti, Metsniereba, Tbilisi, 1991 | MR
[18] Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsialnye igry, Naukova Dumka, Kiev, 1994
[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[20] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[21] Kudryavtsev K. N., “O suschestvovanii garantirovannykh po vyigrysham i riskam reshenii v kooperativnykh igrakh pri neopredelennosti”, Sistemy upravleniya i informatsionnye tekhnologii, 2010, no. 1.1(39), 148–152
[22] Kudryavtsev K. N., “Pobochnye platezhi v odnoi kooperativnoi igre s uchetom riskov”, Vestnik YuUrGU, Seriya “Matematika. Mekhanika. Fizika”, 2011, no. 10(227), 25–28
[23] Kudryavtsev K. N., Stabulit I. S., “Garantirovannoe po Pareto ravnovesie v duopolii Khotellinga na ploskosti”, Vestnik YuUrGU, Seriya “Matematicheskoe modelirovanie i programmirovanie”, 2012, no. 40(299), vyp. 14, 177–181
[24] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1969
[25] Maschenko S. O., “Individualno-optimalnye ravnovesiya nekooperativnykh igr v otnosheniyakh predpochteniya”, Kibernetika i sistemnyi analiz, 2009, no. 1, 171–179
[26] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007
[27] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IIL, M., 1962
[28] Bertrand J., “Book review of theorie mathematique de la richesse sociale and of recherches sur les principles mathematiques de la theorie des richesses”, Journal de Savants, 67 (1883), 499–508
[29] Cournot A., Recherches sur les principes mathématiques de la théorie de richesses, Paris, 1838
[30] Hotelling H., “Stability in Competition”, Economic Journal, 39 (1929), 41–57 | DOI
[31] Vaisbord E. M., Zhukovskiy V. I., Introduction to Multi-Player Differential Games and Their Applications, Gordon and Breach, N.Y. etc., 1988 | MR
[32] Wald A., “Contribution to the theory of statistical estimation and testing hypothesis”, Annuals Math. Statist., 10 (1939), 299–326 | DOI | MR | Zbl
[33] Zhukovskiy V. I., Lyapunov Functions in Differential Games, Taylor and Francis, London–N.Y., 2003 | MR | Zbl
[34] Zhukovskiy V. I., Salukvadze M. E., The Vector-Valued Maximin, Academic Press, N.Y. etc., 1994 | MR | Zbl