Equilibrating conflicts under uncertainty. II.~Analogue of a~maximin
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 2, pp. 3-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we formalize two of the concepts of guaranteed equilibrium in a noncooperative game under uncertainty. We prove the existence of the guaranteed equilibrium in mixed strategies. We constructed the guaranteed equilibrium in Cournot duopoly with a import.
Mots-clés : maximin
Keywords: non-cooperative game, uncertainty, mixed strategies, Nash equilibrium, vector-valued optimums.
@article{MGTA_2013_5_2_a0,
     author = {Vladislav I. Zhukovskiy and Konstantin N. Kudryavtsev},
     title = {Equilibrating conflicts under uncertainty. {II.~Analogue} of a~maximin},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--45},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a0/}
}
TY  - JOUR
AU  - Vladislav I. Zhukovskiy
AU  - Konstantin N. Kudryavtsev
TI  - Equilibrating conflicts under uncertainty. II.~Analogue of a~maximin
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 3
EP  - 45
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a0/
LA  - ru
ID  - MGTA_2013_5_2_a0
ER  - 
%0 Journal Article
%A Vladislav I. Zhukovskiy
%A Konstantin N. Kudryavtsev
%T Equilibrating conflicts under uncertainty. II.~Analogue of a~maximin
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 3-45
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a0/
%G ru
%F MGTA_2013_5_2_a0
Vladislav I. Zhukovskiy; Konstantin N. Kudryavtsev. Equilibrating conflicts under uncertainty. II.~Analogue of a~maximin. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 2, pp. 3-45. http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a0/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[2] Vatel I. A., Ereshko F. I., Matematika konflikta i sotrudnichestva, Znanie, M., 1973

[3] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1987 | MR

[4] Vorobev N. N., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, M., 1984 | MR

[5] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR

[6] Danford N., Shvarts Dzh. T., Lineinye operatory, v. I, Izd-vo inostr. lit-ry, M., 1962

[7] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti, Mezhdunarodnyi NII problem upravleniya, M., 1997

[8] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie po Berzhu–Vaismanu, URSS, KRASAND, M., 2010

[9] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie po Neshu, URSS, KRASAND, M., 2010

[10] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie ugroz i kontrugroz, URSS, KRASAND, M., 2010

[11] Zhukovskii V. I., Kooperativnye igry pri neopredelennosti i ikh prilozheniya, URSS, M., 1999 | MR

[12] Zhukovskii V. I., Dochev D. T., Vektornaya optimizatsiya dinamicheskikh sistem, Tsentr po Matematike, Bolgariya, Ruse, 1981

[13] Zhukovskii V. I., Zhukovskaya L. V., Risk v mnogokriterialnykh i konfliktnykh sistemakh pri neopredelennosti, Editorial URSS, M., 2004

[14] Zhukovskii V. I., Kudryavtsev K. N., “Uravnoveshivanie konfliktov pri neopredelennosti. I. Analog sedlovoi tochki”, Matematicheskaya teoriya igr i ee prilozheniya, 5:1 (2013), 27–44

[15] Zhukovskii V. I., Molostvov V. S., Mnogokriterialnaya optimizatsiya sistem v usloviyakh nepolnoi informatsii, Mezhdunarodnyi NII problem upravleniya, M., 1990

[16] Zhukovskii V. I., Molostvov V. S., Mnogokriterialnoe prinyatie reshenii v usloviyakh neopredelennosti, Mezhdunarodnyi NII problem upravleniya, M., 1988

[17] Zhukovskii V. I., Salukvadze M. E., Mnogokriterialnye zadachi upravleniya v usloviyakh neopredelennosti, Metsniereba, Tbilisi, 1991 | MR

[18] Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsialnye igry, Naukova Dumka, Kiev, 1994

[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[20] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[21] Kudryavtsev K. N., “O suschestvovanii garantirovannykh po vyigrysham i riskam reshenii v kooperativnykh igrakh pri neopredelennosti”, Sistemy upravleniya i informatsionnye tekhnologii, 2010, no. 1.1(39), 148–152

[22] Kudryavtsev K. N., “Pobochnye platezhi v odnoi kooperativnoi igre s uchetom riskov”, Vestnik YuUrGU, Seriya “Matematika. Mekhanika. Fizika”, 2011, no. 10(227), 25–28

[23] Kudryavtsev K. N., Stabulit I. S., “Garantirovannoe po Pareto ravnovesie v duopolii Khotellinga na ploskosti”, Vestnik YuUrGU, Seriya “Matematicheskoe modelirovanie i programmirovanie”, 2012, no. 40(299), vyp. 14, 177–181

[24] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1969

[25] Maschenko S. O., “Individualno-optimalnye ravnovesiya nekooperativnykh igr v otnosheniyakh predpochteniya”, Kibernetika i sistemnyi analiz, 2009, no. 1, 171–179

[26] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007

[27] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IIL, M., 1962

[28] Bertrand J., “Book review of theorie mathematique de la richesse sociale and of recherches sur les principles mathematiques de la theorie des richesses”, Journal de Savants, 67 (1883), 499–508

[29] Cournot A., Recherches sur les principes mathématiques de la théorie de richesses, Paris, 1838

[30] Hotelling H., “Stability in Competition”, Economic Journal, 39 (1929), 41–57 | DOI

[31] Vaisbord E. M., Zhukovskiy V. I., Introduction to Multi-Player Differential Games and Their Applications, Gordon and Breach, N.Y. etc., 1988 | MR

[32] Wald A., “Contribution to the theory of statistical estimation and testing hypothesis”, Annuals Math. Statist., 10 (1939), 299–326 | DOI | MR | Zbl

[33] Zhukovskiy V. I., Lyapunov Functions in Differential Games, Taylor and Francis, London–N.Y., 2003 | MR | Zbl

[34] Zhukovskiy V. I., Salukvadze M. E., The Vector-Valued Maximin, Academic Press, N.Y. etc., 1994 | MR | Zbl