Equilibrating conflicts under uncertainty. I.~Analogue of a~saddle-point
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 27-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we formalize one of the concepts of guaranteed equilibrium in a noncooperative game under uncertainty. We prove the existence of the guaranteed equilibrium in mixed strategies.
Keywords: saddle-point, non-cooperative game, uncertainty, mixed strategies, Nash equilibrium, vector-valued optimums.
@article{MGTA_2013_5_1_a1,
     author = {Vladislav I. Zhukovskiy and Konstantin N. Kudryavtsev},
     title = {Equilibrating conflicts under uncertainty. {I.~Analogue} of a~saddle-point},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {27--44},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a1/}
}
TY  - JOUR
AU  - Vladislav I. Zhukovskiy
AU  - Konstantin N. Kudryavtsev
TI  - Equilibrating conflicts under uncertainty. I.~Analogue of a~saddle-point
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 27
EP  - 44
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a1/
LA  - ru
ID  - MGTA_2013_5_1_a1
ER  - 
%0 Journal Article
%A Vladislav I. Zhukovskiy
%A Konstantin N. Kudryavtsev
%T Equilibrating conflicts under uncertainty. I.~Analogue of a~saddle-point
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 27-44
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a1/
%G ru
%F MGTA_2013_5_1_a1
Vladislav I. Zhukovskiy; Konstantin N. Kudryavtsev. Equilibrating conflicts under uncertainty. I.~Analogue of a~saddle-point. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 27-44. http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a1/

[1] Bosc V., Lektsii po matematike, v. 12, Kontrprimery i paradoksy, URSS, knizhnyi dom “Librokom”, M., 2009

[2] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[3] Ventsel E. S., Issledovanie operatsii, Znanie, M., 1976

[4] Vorobev N. N., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, M., 1984 | MR

[5] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti, Mezhdunarodnyi NII problem upravleniya, M., 1997

[6] Zhukovskii V. I., Kudryavtsev K. N., Uravnoveshivanie konfliktov i prilozheniya, URSS, LENAND, M., 2012

[7] Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsialnye igry, Naukova Dumka, Kiev, 1994

[8] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007

[9] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Nat. Academ. Sci. USA, 36 (1950), 48–49 | DOI | MR | Zbl

[10] Wald A., “Contribution to the theory of statistical estimation and testing hypothesis”, Annuals Math. Statist., 10 (1939), 299–326 | DOI | MR | Zbl

[11] Zhukovskiy V. I., Salukvadze M. E., The Vector-Valued Maximin, Academic Press, N.Y. etc., 1994 | MR | Zbl