On a~discrete arbitration procedure with quadratic payoff function
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 51-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-person bargaining model with arbitrator's participation. The players make their offers and the arbitrator's decision is simulated by a random variable with uniform distribution on the set $\{-n,-(n-1),\dots,-1,0,1,\dots,n-1,n\}$. We use a new arbitration procedure. The Nash equilibrium in this game in mixed strategies is found.
Keywords: non-cooperative game, equilibrium, mixed strategies.
Mots-clés : arbitration scheme
@article{MGTA_2012_4_3_a3,
     author = {Alexander E. Mentcher},
     title = {On a~discrete arbitration procedure with quadratic payoff function},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {51--57},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a3/}
}
TY  - JOUR
AU  - Alexander E. Mentcher
TI  - On a~discrete arbitration procedure with quadratic payoff function
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 51
EP  - 57
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a3/
LA  - ru
ID  - MGTA_2012_4_3_a3
ER  - 
%0 Journal Article
%A Alexander E. Mentcher
%T On a~discrete arbitration procedure with quadratic payoff function
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 51-57
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a3/
%G ru
%F MGTA_2012_4_3_a3
Alexander E. Mentcher. On a~discrete arbitration procedure with quadratic payoff function. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 51-57. http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a3/

[1] Mazalov V. V., Tokareva Yu. S., “Teoretiko-igrovye modeli provedeniya konkursov”, Matematicheskaya teoriya igr i ee prilozheniya, 2:2 (2010), 66–78

[2] Mencher A. E., “Diskretnaya arbitrazhnaya protsedura s neravnomernym raspredeleniem veroyatnostei”, Matematicheskaya teoriya igr i ee prilozheniya, 1:4 (2009), 78–92

[3] Farber H., “An analysis of final-offer arbitration”, Journal of Conflict Resolution, 35 (1980), 683–705 | DOI | MR

[4] Mazalov V. V., Mentcher A. E., Tokareva J. S., “On a discrete arbitration procedure in three points”, Game Theory and Applications, 11 (2005), 87–91

[5] Mazalov V. V., Mentcher A. E., Tokareva J. S., “On a discrete arbitration procedure”, Sci. Math. Japon., 63:3 (2006), 325–330 | MR | Zbl