On a discrete arbitration procedure with quadratic payoff function
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 51-57
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a two-person bargaining model with arbitrator's participation. The players make their offers and the arbitrator's decision is simulated by a random variable with uniform distribution on the set $\{-n,-(n-1),\dots,-1,0,1,\dots,n-1,n\}$. We use a new arbitration procedure. The Nash equilibrium in this game in mixed strategies is found.
Keywords:
non-cooperative game, equilibrium, mixed strategies.
Mots-clés : arbitration scheme
Mots-clés : arbitration scheme
@article{MGTA_2012_4_3_a3,
author = {Alexander E. Mentcher},
title = {On a~discrete arbitration procedure with quadratic payoff function},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {51--57},
year = {2012},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a3/}
}
Alexander E. Mentcher. On a discrete arbitration procedure with quadratic payoff function. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 51-57. http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a3/
[1] Mazalov V. V., Tokareva Yu. S., “Teoretiko-igrovye modeli provedeniya konkursov”, Matematicheskaya teoriya igr i ee prilozheniya, 2:2 (2010), 66–78
[2] Mencher A. E., “Diskretnaya arbitrazhnaya protsedura s neravnomernym raspredeleniem veroyatnostei”, Matematicheskaya teoriya igr i ee prilozheniya, 1:4 (2009), 78–92
[3] Farber H., “An analysis of final-offer arbitration”, Journal of Conflict Resolution, 35 (1980), 683–705 | DOI | MR
[4] Mazalov V. V., Mentcher A. E., Tokareva J. S., “On a discrete arbitration procedure in three points”, Game Theory and Applications, 11 (2005), 87–91
[5] Mazalov V. V., Mentcher A. E., Tokareva J. S., “On a discrete arbitration procedure”, Sci. Math. Japon., 63:3 (2006), 325–330 | MR | Zbl