Nash equilibrium for differential game and nonanticipative strategies technique
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two person nonzero-sum games in the class of nonanticipative strategies. The Nash equilibrium for this case is defined. Also we give the characterization of Nash equilibrium strategies. It is shown that the Nash equilibrium solution in the class of nonanticipative strategies can be approximated by the strategies with the model.
Keywords: Nash equilibrium, nonanticipative strategies, control with model.
@article{MGTA_2012_4_3_a0,
     author = {Yurii V. Averboukh},
     title = {Nash equilibrium for differential game and nonanticipative strategies technique},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a0/}
}
TY  - JOUR
AU  - Yurii V. Averboukh
TI  - Nash equilibrium for differential game and nonanticipative strategies technique
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 3
EP  - 20
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a0/
LA  - ru
ID  - MGTA_2012_4_3_a0
ER  - 
%0 Journal Article
%A Yurii V. Averboukh
%T Nash equilibrium for differential game and nonanticipative strategies technique
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 3-20
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a0/
%G ru
%F MGTA_2012_4_3_a0
Yurii V. Averboukh. Nash equilibrium for differential game and nonanticipative strategies technique. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 3-20. http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a0/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[2] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993 | MR

[3] Kononenko A. F., “O ravnovesnykh pozitsionnykh strategiyakh v neantagonisticheskikh differentsialnykh igrakh”, Doklady AN SSSR, 231:2 (1976), 285–288 | MR | Zbl

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[5] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya – II”, Izvestiya AN SSSR. Tekhn. kibernentika, 1973, no. 3, 22–42 | MR

[6] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[7] Kryazhimskii A. V., Chentsov A. G., O strukture igrovogo upravleniya v zadachakh sblizheniya i ukloneniya, Rukop. dep. v VINITI, No 1729-80 Dep., Sverdlovsk, 1979

[8] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[9] Chistyakov S. V., “O beskoalitsionnykh differentsialnykh igrakh”, Doklady AN SSSR, 259:5 (1981), 1052–1055 | MR

[10] Cardaliaguet P., Buckdahn R., Rainer C., “Nash equilibrium payoffs for nonzero-sum stochastic differential games”, SIAM Journal of Control and Optimization, 43:2 (2004), 624–642 | DOI | MR | Zbl

[11] Elliot R. J., Kalton N., The Existence of Value for Differential Games, Memoir of the American Mathematical Society, 126, 1972 | MR | Zbl

[12] Evans L. C., Sougandinis P. E., “Differential Games and representation formulas for solutions of Hamilton–Jacobi–Bellman equations”, Indiana University Mathematics Journal, 33 (1984), 773–797 | DOI | MR | Zbl

[13] Roxin E., “Axiomatic approach in differential games”, Journal Optimization Theory and Application, 3:3 (1969), 153–163 | DOI | MR | Zbl