A game-control problem under lack of information
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 2, pp. 57-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal feedback control problem is considered for the nonlinear dynamical system under lack of information on disturbances. The minimax-maximin problem on the guaranteed result for a given positional quality index is formalized in the framework of concepts of the Sverdlovsk-Ekaterinburg school on the theory of differential games, as the two-person antagonistic differential game. The existence of a saddle point and a value of the game is obtained. The solution of a problem is based on the method of extremal shift to accompanying points. Results are illustrated by the model example and its numerical simulation.
Keywords: nonlinear dynamical system, control, disturbance, quality index, guaranteed result, extremal shift, value of the game, saddle point.
@article{MGTA_2012_4_2_a3,
     author = {Andrew N. Krasovskii and Alexandr N. Ladeyschikov},
     title = {A game-control problem under lack of information},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {57--70},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a3/}
}
TY  - JOUR
AU  - Andrew N. Krasovskii
AU  - Alexandr N. Ladeyschikov
TI  - A game-control problem under lack of information
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 57
EP  - 70
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a3/
LA  - ru
ID  - MGTA_2012_4_2_a3
ER  - 
%0 Journal Article
%A Andrew N. Krasovskii
%A Alexandr N. Ladeyschikov
%T A game-control problem under lack of information
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 57-70
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a3/
%G ru
%F MGTA_2012_4_2_a3
Andrew N. Krasovskii; Alexandr N. Ladeyschikov. A game-control problem under lack of information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 2, pp. 57-70. http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a3/

[1] Krasovskii A. N., “O pozitsionnom minimaksnom upravlenii”, Prikl. matematika i mekhanika, 44:4 (1980), 602–610 | MR

[2] Krasovskii A. N., “Differentsialnaya igra dlya pozitsionnogo funktsionala ot fazovykh koordinat i upravlyayuschikh vozdeistvii”, Dokl. AN SSSR, 322:5 (1992), 839–842 | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[4] Krasovskii A. N., Tretyakov V. E., “Programmnyi sintez differentsialnoi igry s integralnoi platoi”, Prikl. matematika i mekhanika, 48:4 (1982), 605–612 | MR

[5] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl

[6] Mak-Kinsi Dzh., Vvedenie v teoriyu igr, Mir, M., 1960

[7] Osipov Yu. S., “Differentsialnye igry sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | MR | Zbl

[8] Petrosyan L. A., Differentsialnye igry presledovaniya, LGU, L., 1977 | MR

[9] Krasovskii A. N., Krasovskii N. N., Control Under Lack of Information, Birkhauser, Boston, 1994 | Zbl