On existence of $\varepsilon$-equilibrium in Volterra functional operator games without discrimination
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 74-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is continuation of author's research on the question of existence of $\varepsilon$-equilibrium in the sense of piecewise program strategies on Volterra chain in antagonistic games associated with nonlinear controlled functional operator equations. Just as in the paper published earlier on this subject, the main result consists in sufficient conditions of $\varepsilon$-equilibrium. The difference is that this time we investigate the game without discrimination of players. Application of results obtained in the paper is illustrated by example of a mixed boundary value problem associated with wave equation.
Keywords: functional operator game, nonlinear functional operator equations, piecewise program strategies, $\varepsilon$-equilibrium.
Mots-clés : Volterra set chain
@article{MGTA_2012_4_1_a4,
     author = {Andrey V. Chernov},
     title = {On existence of $\varepsilon$-equilibrium in {Volterra} functional operator games without discrimination},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {74--92},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a4/}
}
TY  - JOUR
AU  - Andrey V. Chernov
TI  - On existence of $\varepsilon$-equilibrium in Volterra functional operator games without discrimination
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 74
EP  - 92
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a4/
LA  - ru
ID  - MGTA_2012_4_1_a4
ER  - 
%0 Journal Article
%A Andrey V. Chernov
%T On existence of $\varepsilon$-equilibrium in Volterra functional operator games without discrimination
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 74-92
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a4/
%G ru
%F MGTA_2012_4_1_a4
Andrey V. Chernov. On existence of $\varepsilon$-equilibrium in Volterra functional operator games without discrimination. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 74-92. http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a4/

[1] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR

[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[3] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vysshaya shkola, M., 1998 | MR | Zbl

[4] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 30:1 (1990), 3–21 | MR | Zbl

[5] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differentsialnye uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[6] Fedorov V. M., Kurs funktsionalnogo analiza, Lan, Spb., 2005

[7] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | MR | Zbl

[8] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl

[9] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2012, no. 3, 62–73 | MR | Zbl

[10] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR