On the capture of two escapees in the non-stationary problem of simple pursuit
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 21-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

A differential game of the group pursuit of two fleeing a group of persecutors and two escapees at equal dynamic opportunities of all participants is considered. Sufficient conditions for capture are received.
Keywords: differential game, group pursuit, piece-program strategy and counterstrategy.
@article{MGTA_2012_4_1_a1,
     author = {Marina N. Vinogradova},
     title = {On the capture of two escapees in the non-stationary problem of simple pursuit},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a1/}
}
TY  - JOUR
AU  - Marina N. Vinogradova
TI  - On the capture of two escapees in the non-stationary problem of simple pursuit
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 21
EP  - 31
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a1/
LA  - ru
ID  - MGTA_2012_4_1_a1
ER  - 
%0 Journal Article
%A Marina N. Vinogradova
%T On the capture of two escapees in the non-stationary problem of simple pursuit
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 21-31
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a1/
%G ru
%F MGTA_2012_4_1_a1
Marina N. Vinogradova. On the capture of two escapees in the non-stationary problem of simple pursuit. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 21-31. http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a1/

[1] Bannikov A. S., “Ob odnoi zadache prostogo presledovaniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 3–11 | MR

[2] Bannikov A. S., Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 40–51

[3] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Udmurtskii universitet, Izhevsk, 2009 | MR | Zbl

[4] Vagin D. A., Petrov N. N., “Ob odnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Prikladnaya matematika i mekhanika, 66:2 (2002), 238–245 | MR | Zbl

[5] Grigorenko N. L., “Presledovanie neskolkimi upravlyaemymi ob'ektami dvukh ubegayuschikh”, DAN SSSR, 282:5 (1985), 1051–1054 | MR | Zbl

[6] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990

[7] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Differentsialnye uravneniya, 4:4 (1968), 606–617 | MR | Zbl

[8] Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Matematicheskaya teoriya igr i ee prilozheniya, 2:4 (2010), 74–83 | Zbl

[9] Petrov N. N., Petrov N. N., “O differentsialnoi igre ‘kazaki–razboiniki’ ”, Differentsialnye uravneniya, 19:8 (1983), 1366–1374 | MR | Zbl

[10] Petrov N. N., Prokopenko V. A., “Ob odnoi zadache presledovaniya gruppy ubegayuschikh”, Differentsialnye uravneniya, 23:4 (1987), 724–726 | MR

[11] Petrosyan L. A., “Igry presledovaniya so mnogimi uchastnikami”, Izvestiya AN Arm. SSR, 1:5 (1966), 331–340 | MR

[12] Petrosyan L. A., Differentsialnye igry presledovaniya, Izd-vo LGU, L., 1977 | MR | Zbl

[13] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[14] Rikhsiev B. B., Differentsialnye igry s prostymi dvizheniyami, Fan, Tashkent, 1989 | MR | Zbl

[15] Satimov N., Mamatov M. Sh., “O zadache presledovaniya i ukloneniya ot vstrechi v differentsialnykh igrakh mezhdu gruppami presledovatelei i ubegayuschikh”, DAN Uzb. SSR, 1983, no. 4, 3–6 | MR | Zbl

[16] Chernousko F. L., “Odna zadacha ukloneniya ot mnogikh presledovatelei”, Prikladnaya Matematika i Mekhanika, 40:1 (1976), 14–24 | Zbl

[17] Chikrii A. A., Konfliktno-upravlyaemye protsessy, Nauk. dumka, Kiev, 1992

[18] Chikrii A. A., Prokopovich P. V., “O zadache ubeganiya pri vzaimodeistvii grupp dvizhuschikhsya ob'ektov”, Kibernetika, 1989, no. 5, 59–63 | MR

[19] Chikrii A. A., Prokopovich P. V., “Lineinaya zadacha ubeganiya pri vzaimodeistvii grupp ob'ektov”, Prikladnaya Matematika i Mekhanika, 58:4 (1994), 12–21 | MR