Information solvability in multistage games with a finite set of players
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 2, pp. 81-101
Cet article a éte moissonné depuis la source Math-Net.Ru
Multistage games with separated dynamics are considered in the paper. The basis of extensive form dynamic game simulation is a definition of its information structure. J. von Neumann, G. Owen, H. W. Kuhn and others simulated information by means of information sets in their constructions. No doubt, this is a rigorous approach but it has an evident drawback of excessive generality. In the present paper information structure is simulated by means of information vector-functions of players. But apparently not any ordered according to players collection of information vector-functions corresponds to an adequate description of information structure process dynamics. In the paper the adequacy mentioned is defined by the concept of information solvability of an ordered information vector-function collection.
Keywords:
multistage game, extensive game form, information vector-function, information solvability of an ordered collection of information vector-functions.
@article{MGTA_2011_3_2_a4,
author = {Nikolai M. Slobozhanin},
title = {Information solvability in multistage games with a~finite set of players},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {81--101},
year = {2011},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a4/}
}
Nikolai M. Slobozhanin. Information solvability in multistage games with a finite set of players. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 2, pp. 81-101. http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a4/
[1] Petrosyan L. A., Tomskii G. V., Differentsialnye igry s nepolnoi informatsiei, Izdatelstvo irkutskogo universiteta, Irkutsk, 1984 | MR | Zbl
[2] Slobozhanin N. M., Informatsiya i upravlenie v dinamicheskikh igrakh, Izdatelstvo SPbGU, Sankt-Peterburg, 2002
[3] Kuhn H., “Extensive games and the problem of information”, Annals of Mathematics Studies, 28 (1953), 193–216 | MR | Zbl
[4] Scarf H., Shapley L., “Game with partial information”, Annals of Mathematics Studies, 3:39 (1957), 213–229 | MR
[5] von Neumann J., Morgenstern O., Theory of games and economic behavior, Princeton University Press, Princeton, 1947 | MR | Zbl