Equilibrium in bargaining model with non-uniform distribution for reservation prices
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 2, pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a game-theoretic bargaining model of bilateral monopoly under uncertainty. Each player has a private information about its own reservation price. The reservation prices are random variables with linear probabilistic density functions. Seller and buyer submit sealed offers and if the buyer's offer is higher than seller's offer a bargain is enacted and the good is sold. The Bayes equilibrium is derived in analytical form. The comparison of solutions in the typical states of the market is made.
Keywords: negotiations, equilibrium, reservation prices.
Mots-clés : transaction
@article{MGTA_2011_3_2_a2,
     author = {Vladimir V. Mazalov and Julia S. Tokareva},
     title = {Equilibrium in bargaining model with non-uniform distribution for reservation prices},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a2/}
}
TY  - JOUR
AU  - Vladimir V. Mazalov
AU  - Julia S. Tokareva
TI  - Equilibrium in bargaining model with non-uniform distribution for reservation prices
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 37
EP  - 49
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a2/
LA  - ru
ID  - MGTA_2011_3_2_a2
ER  - 
%0 Journal Article
%A Vladimir V. Mazalov
%A Julia S. Tokareva
%T Equilibrium in bargaining model with non-uniform distribution for reservation prices
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 37-49
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a2/
%G ru
%F MGTA_2011_3_2_a2
Vladimir V. Mazalov; Julia S. Tokareva. Equilibrium in bargaining model with non-uniform distribution for reservation prices. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 2, pp. 37-49. http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a2/

[1] Zenkevich N. A., “Mekhanizmy zaklyucheniya sdelki na V2V rynkakh: Sravnitelnyi analiz”, Vestnik SPbGU. Seriya Menedzhment, 2008, no. 1, 3–30

[2] Chatterjee K., Samuelson W., “Bargaining under incomplete information”, Operations Research, 31:5 (1983), 835–851 | DOI | Zbl

[3] Harsanyi J. C., Selten R., “A generalised Nash solution for two-person bargaining games with incomplete information”, Manag. Sci., 18 (1972), 80–106 | DOI | MR

[4] Klemperer P., The economic theory of auction, Edward Elgar Publishing, Inc., Northampton, MA, 2000

[5] Myerson R., “Two-person bargaining problems with incomplete information”, Econometrica, 52 (1984), 461–487 | DOI | MR | Zbl

[6] Myerson R., Satterthwait M. A., “Efficient mechanisms for bilateral trading”, Journal of Economic Theory, 29 (1983), 265–281 | DOI | MR | Zbl