To the non-stationary problem of the group pursuit with phase restrictions
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 4, pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article two linear non-stationary pursuit-evasion problems with one evader and the group of pursuers under condition of equivalent dynamic possibilities and that the evader can not leave the certain set are considered. It's proved that if the number of pursuers is less than the dimension of the space, then the evader can avoid meeting on the interval $[t_0,\infty)$.
Keywords: differential game, group pursuit, evasion problem.
@article{MGTA_2010_2_4_a3,
     author = {Nikolay N. Petrov},
     title = {To the non-stationary problem of the group pursuit with phase restrictions},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_4_a3/}
}
TY  - JOUR
AU  - Nikolay N. Petrov
TI  - To the non-stationary problem of the group pursuit with phase restrictions
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 74
EP  - 83
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_4_a3/
LA  - ru
ID  - MGTA_2010_2_4_a3
ER  - 
%0 Journal Article
%A Nikolay N. Petrov
%T To the non-stationary problem of the group pursuit with phase restrictions
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 74-83
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_4_a3/
%G ru
%F MGTA_2010_2_4_a3
Nikolay N. Petrov. To the non-stationary problem of the group pursuit with phase restrictions. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 4, pp. 74-83. http://geodesic.mathdoc.fr/item/MGTA_2010_2_4_a3/

[1] Bannikov A. S., Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 40–51

[2] Ivanov R. P., “Prostoe presledovanie na kompakte”, DAN SSSR, 254:6 (1978), 1318–1321 | MR

[3] Kovshov A. M., “Strategiya parallelnogo sblizheniya v igre prostogo presledovaniya na sfere. Geodezicheskoe sblizhenie”, Matematicheskaya teoriya igr i ee prilozheniya, 1:4 (2009), 41–62 | Zbl

[4] Petrov N. N., “Ob odnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Prikladnaya matematika i mekhanika, 52:6 (1988), 1060–1063 | MR

[5] Petrov N. N., “Odna zadacha ukloneniya ot mnogikh presledovatelei”, Izvestiya RAN. Teoriya i sistemy upravleniya, 1998, no. 6, 41–43 | MR | Zbl

[6] Petrov N. N., Prostoe presledovanie pri nalichii fazovykh ogranichenii, Dep. v VINITI 27.03.84, No 1684-84, L., 1984, 16 pp.

[7] Petrosyan L. A., “Igry presledovaniya so mnogimi uchastnikami”, Izvestiya AN Arm.SSR, 1:5 (1966), 331–340 | MR

[8] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[9] Pshenichnyi B. N., Rappoport I. S., “Ob odnoi zadache gruppovogo presledovaniya”, Kibernetika, 1979, no. 6, 145–146 | MR

[10] Satimov N. Yu., Kuchkarov A. Sh., “Uklonenie ot vstrechi so mnogimi presledovatelyami na poverkhnosti”, Uzbekskii matematicheskii zhurnal, 2001, no. 1, 51–55 | MR

[11] Shuravina I. N., “Ob odnoi zadache ukloneniya v konuse”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 2, 13–16