Proportional solutions for bargaining games and NTU games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 41-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the properties of proportional solutions for bargaining games and NTU games based on the proportional excess. The status quo-proportional solution for bargaining games is defind. It's consistency (in Hart–Mas-Collel sense) is proved, and an axiomatic characterization with consistency property is given. A consistent continuatuon of the solution to NTU game is defind, and the uniqueness theorem is proved. Some relations between bargaining and NTU solutions are given.
Keywords: bargaining games, NTU games, status quo-proportional solution, consistency.
Mots-clés : proportional excess
@article{MGTA_2010_2_3_a3,
     author = {Sergei L. Pechersky},
     title = {Proportional solutions for bargaining games and {NTU} games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {41--78},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a3/}
}
TY  - JOUR
AU  - Sergei L. Pechersky
TI  - Proportional solutions for bargaining games and NTU games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 41
EP  - 78
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a3/
LA  - ru
ID  - MGTA_2010_2_3_a3
ER  - 
%0 Journal Article
%A Sergei L. Pechersky
%T Proportional solutions for bargaining games and NTU games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 41-78
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a3/
%G ru
%F MGTA_2010_2_3_a3
Sergei L. Pechersky. Proportional solutions for bargaining games and NTU games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 41-78. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a3/

[1] Pecherskii S. L., “Funktsii ekstsessa dlya kooperativnykh igr bez pobochnykh platezhei: aksiomaticheskii podkhod”, Ekonomiko-matematicheskie issledovaniya: matematicheskie modeli i informatsionnye tekhnologii, Nauka, SPb, 2000, 65–82

[2] Pecherskii S. L., “Kalibrovochnyi ekstsess dlya igr s netransferabelnymi poleznostyami: alternativnyi podkhod”, Ekonomicheskie issledovaniya: teoriya i prilozheniya, Izd-vo Evropeiskogo universiteta v Sankt-Peterburge, SPb, 2002, 229–258

[3] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evropeiskogo universiteta v Sankt-Peterburge, SPb, 2004

[4] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[5] Feldman B., The proportional value of a cooperative game, Mimeo. Seudder Kemper Investments, Chicago, 1999

[6] Hart S., Mas-Colell A., “Potential, value, and consistency”, Econometrica, 57 (1989), 589–614 | DOI | MR | Zbl

[7] Herrero C., Villar A., “The rights egalitarian solution for NTU sharing problem”, Int. J. of Game Theory, 39 (2009), 137–150 | DOI | MR

[8] Kalai E., “Excess functions for cooperative games without sidepayments”, SIAM J. Appl. Math., 29:1 (1975), 60–71 | DOI | MR

[9] Kalai E., “Proportional solutions to bargaining situations: interpersonal utility comparisions”, Econometrica, 45 (1977), 1623–1630 | DOI | MR | Zbl

[10] Kalai E., Samet D., “Monotonic solutions to general cooperative games”, Econometrica, 53 (1985), 307–327 | DOI | MR | Zbl

[11] Kalai D., Smorodinsky M., “Other solutions to Nash's bargaining problem”, Econometrica, 45 (1975), 513–518 | DOI | MR

[12] Lemaire J., “Cooperative game theory and its insurance applications”, Austin Bull., 21 (1991), 17–40 | DOI

[13] Lensberg T., “Stability and the Nash solution”, J. Econ. Theory, 45 (1988), 330–341 | DOI | MR | Zbl

[14] Ortmann K., “The proportional value for positive cooperative games”, Math. Meth. Oper. Res., 51 (2000), 235–248 | DOI | MR | Zbl

[15] Pechersky S., “The Linear Bargaining Solution”, Russian Contribution to Game Theory and Equilibrium Theory, Springer, Berlin–NY–Heidelberg, 2006, 153–164 | DOI | Zbl