Strong equilibrium construction in a~noncooperative differential game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 2, pp. 42-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

A strong equilibrium technique is proposed. It is based on a special scalarization of multicreteria problem. Sufficient conditions for strong equilibrium to exist are proved. The result is illustrated on asymmetric differential game with two players, where strong equilibrium is found in explicit form.
Keywords: differential game, Nash equilibrium, strong equilibrium.
@article{MGTA_2010_2_2_a1,
     author = {Nikolay A. Zenkevich and Andrey V. Zyatchin},
     title = {Strong equilibrium construction in a~noncooperative differential game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {42--65},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a1/}
}
TY  - JOUR
AU  - Nikolay A. Zenkevich
AU  - Andrey V. Zyatchin
TI  - Strong equilibrium construction in a~noncooperative differential game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 42
EP  - 65
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a1/
LA  - ru
ID  - MGTA_2010_2_2_a1
ER  - 
%0 Journal Article
%A Nikolay A. Zenkevich
%A Andrey V. Zyatchin
%T Strong equilibrium construction in a~noncooperative differential game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 42-65
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a1/
%G ru
%F MGTA_2010_2_2_a1
Nikolay A. Zenkevich; Andrey V. Zyatchin. Strong equilibrium construction in a~noncooperative differential game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 2, pp. 42-65. http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a1/

[1] Vaisbord E. M., Zhukovskii V. I., Vvedenie v differentsialnye igry neskolkikh lits i ikh prilozheniya, Sovetskoe radio, M., 1980 | MR

[2] Zenkevich N. A., Petrosyan L. A., Yang D. V. K., Dinamicheskie igry i ikh prilozheniya v menedzhmente, Vysshaya shkola menedzhmenta, Sankt-Peterburg, 2009

[3] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, per. s frants. O. R. Menshikovoi, I. S. Menshikova, Mir, Moskva, 1985 | MR | Zbl

[4] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vyssh. shk., Knizhnyi dom “Universitet”, M., 1998 | MR | Zbl

[5] Fleming U., Rishel R., Optimalnoe upravlenie determinirovannymi i stokhasticheskimi sistemami, per. s angl. M. G. Butrim, P. K. Katysheva, ed. A. N. Shiryaev, Mir, M., 1978 | MR

[6] Chistyakov S. V., “O postroenii silno dinamicheski ustoichivykh reshenii kooperativnykh differentsialnykh igr”, Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta. Ser. 1. Matematika, mekhanika, astronomiya, 1992, no. 1, 57–69

[7] Aumann R. J., “Acceptable Points in General Cooperative $n$-Person Games”, Contributions to the Theory of Games IV, Annals of Mathematics Study, 40, ed. A. W. Tucker, Princeton University Press, Princeton NJ, 1959, 287–324 | MR

[8] Isaacs R., Differential games, John Wiley and sons Inc, New York–London–Sydney, 1965 | MR | Zbl

[9] Petrosyan L. A., Grauer L. V., “Strong Nash Equilibrium in Multistage Games”, International Game Theory Review, 4:3 (2002), 255–264 | DOI | MR

[10] Yeung D. W. K., Petrosyan L. A., Cooperative stochastic differential games, Springer Verlag, New York, 2006 | MR