A consensus value for games with coalition structure
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 93-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of TU-games for which almost all solution concepts, except the consensus value, yield paradoxical results is selected. It is proved, that it is big boss games. Generalisation of consensus value for games with coalition structure is introduced.
Mots-clés : coalition structure, coalition value, consensus value
Keywords: big boss game, axiomatization.
@article{MGTA_2010_2_1_a4,
     author = {Alexandra B. Zinchenko and George V. Mironenko and Polina A. Provotorova},
     title = {A consensus value for games with coalition structure},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {93--106},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a4/}
}
TY  - JOUR
AU  - Alexandra B. Zinchenko
AU  - George V. Mironenko
AU  - Polina A. Provotorova
TI  - A consensus value for games with coalition structure
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 93
EP  - 106
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a4/
LA  - ru
ID  - MGTA_2010_2_1_a4
ER  - 
%0 Journal Article
%A Alexandra B. Zinchenko
%A George V. Mironenko
%A Polina A. Provotorova
%T A consensus value for games with coalition structure
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 93-106
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a4/
%G ru
%F MGTA_2010_2_1_a4
Alexandra B. Zinchenko; George V. Mironenko; Polina A. Provotorova. A consensus value for games with coalition structure. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 93-106. http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a4/

[1] Aumann R. J., Maschler M., “The bargaining set for cooperative games”, Advances in Game Theory, Princeton University Press, Princeton, 1964, 443–447 | MR

[2] Gomez-Rua M., Vidal-Puga J., The axiomatic approach to three values in games with coalition structure, MPRA Paper 8904, 2008, 30 pp.

[3] Ju Y., Borm P., Ruys P., “The consensus value: a new solution concept for cooperative games”, Social Choice and Welfare, 28:4 (2007), 685–703 | DOI | MR | Zbl

[4] Kamijo Y., “A Two-step Shapley value in a cooperative game with a coalition structure”, 21 COE-GLOPE Working Paper Series, 28, 2007, 1–9

[5] Owen G., “Values of games with a priori unions”, Essays in Mathematical Economics and Game Theory, Springer-Verlag, Berlin, 1977, 76–88 | DOI | MR

[6] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal of Applied Mathematics, 17 (1969), 1163–1170 | DOI | MR | Zbl

[7] Tijs S., “Big boss games, clan games and information market games”, Game Theory and Applications, Academic Press, San Diego, 1990, 410–412 | DOI

[8] de Waegenaere A., Suijs J, Tijs S., “Stable profit sharing in cooperative investment”, OR Spectrum, 27:1 (2005), 85–93 | DOI | MR | Zbl

[9] Winter E., “A value for cooperative games with levels structure of cooperation”, International Journal of Game Theory, 18:2 (1989), 227–240 | DOI | MR | Zbl