Continuous game NIM
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 3, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A continuous version of game NIM is considered in which two players take water from the tank one by one. The player wins the game if she makes the last turn. Optimal strategies and value of the game is obtained.
Keywords: game NIM, restriction for the choice, continuous version, optimal strategies.
@article{MGTA_2009_1_3_a0,
     author = {Sergey V. Vinnichenko},
     title = {Continuous game {NIM}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a0/}
}
TY  - JOUR
AU  - Sergey V. Vinnichenko
TI  - Continuous game NIM
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 3
EP  - 15
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a0/
LA  - ru
ID  - MGTA_2009_1_3_a0
ER  - 
%0 Journal Article
%A Sergey V. Vinnichenko
%T Continuous game NIM
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 3-15
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a0/
%G ru
%F MGTA_2009_1_3_a0
Sergey V. Vinnichenko. Continuous game NIM. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a0/

[1] Epp R.J., Ferguson T.S., “A note on take-away games”, The Fibonacci Quarterly, 18:4 (1980), 300–303 | MR | Zbl

[2] Moulin H., Theorie des jeux pour l'economie et la politique, Hermann, Paris, 1981

[3] Schwenk A.J., “Take-Away Games”, The Fibonacci Quarterly, 8 (1970), 225–234 | MR | Zbl