Principles of dynamic stability
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 106-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are three important aspects which must be taken into account when the problem of stability of long-range cooperative agreements is investigated: time-consistency of the cooperative agreements, strategic stability and irrational behavior proofness. The mathematical results based on imputation distribution procedures (IDP) are developed to deal with the above mentioned aspects of cooperation. We proved that for a special class of differential games time-consistent cooperative agreement can be strategically supported by Nash equilibrium. We also consider an example where all three conditions are satisfied.
Keywords: differential game, cooperative solution, time-consistency of the cooperative agreements, payoff distribution procedures (PDP), imputation distribution procedures (IDP), strategic stability, irrational behavior proofness.
@article{MGTA_2009_1_1_a5,
     author = {Leon Petrosyan and Nickolay Zenkevich},
     title = {Principles of dynamic stability},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {106--123},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a5/}
}
TY  - JOUR
AU  - Leon Petrosyan
AU  - Nickolay Zenkevich
TI  - Principles of dynamic stability
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 106
EP  - 123
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a5/
LA  - ru
ID  - MGTA_2009_1_1_a5
ER  - 
%0 Journal Article
%A Leon Petrosyan
%A Nickolay Zenkevich
%T Principles of dynamic stability
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 106-123
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a5/
%G ru
%F MGTA_2009_1_1_a5
Leon Petrosyan; Nickolay Zenkevich. Principles of dynamic stability. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 106-123. http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a5/

[1] Petrosyan L.A., Danilov N.A., “Ustoichivye resheniya neantagonisticheskikh differentsialnykh igr s tranzitivnymi vyigryshami”, Vestnik LGU, 1979, no. 1, 46–54

[2] Kuhn H.W., “Extensive games and the problem of imputation”, Contributions to the Theory of Games, v. 2, eds. H.W. Kuhn and A.W. Tucker, Princeton University Press, Princeton, 1953, 193–216 | MR

[3] Nash J., “Non-cooperative games”, Ann. Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl

[4] Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton, 1944 | Zbl

[5] Petrosjan L.A., Differential Games of Pursuit, World Scientific, Singapore, 1993 | MR

[6] Shapley L.S., “A Value for $n$-Person Games”, Contributions to the Theory of Games, v. 2, eds. H.W. Kuhn and A.W. Tucker, Princeton University Press, Princeton, 1953, 307–317 | MR

[7] Yeung D.W.K., “An irrational-behavior-proofness condition in cooperative differential games”, Int. J. of Game Theory Review, 8:4 (2006), 739–744 | DOI | MR | Zbl