Equilibrium in $n$-player competitive game of timing
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 67-86
Cet article a éte moissonné depuis la source Math-Net.Ru
Each player in the game of timing has to decide his time to shoot under the condition that he is not informed of the shooting times of his rivals. That is, we deal with silent games of timing. In the terms of games of timing can be formulated the auctions, games of war of attrition, competitive prediction of a random variable, etc. Using the symmetry we derive the equation to determine the equilibrium in these games.
Keywords:
game of timing, $n$-person game, equilibrium, war of attrition, prediction of random variable.
@article{MGTA_2009_1_1_a3,
author = {Vladimir Mazalov and Minoru Sakaguchi},
title = {Equilibrium in $n$-player competitive game of timing},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {67--86},
year = {2009},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a3/}
}
Vladimir Mazalov; Minoru Sakaguchi. Equilibrium in $n$-player competitive game of timing. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 67-86. http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a3/
[1] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964 | Zbl
[2] Petrosyan L.A., Zenkevich N.A., Semina E.A., Teoriya igr, Vysshaya shkola, M., 1998 | MR | Zbl
[3] Sakaguchi M., Szajowski K., “Competetive prediction of a random variable file name: COMPRE 1.AML”, Math. Japonica, 43:3 (1996), 461–472 | MR | Zbl