Between the prekernel and the prenucleolus
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 46-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

A collection of $TU$ games solutions intermediate between the prekernel and the prenucleolus is considered. All these solutions are Davis-Maschler consistent, symmetric and covariant. Each solution from the collection is parametrized by a positive integer $k$ such that for all games with the number of players not greater than $k$, the solution for parameter $k$ coincides with the prenucleolus, and for games with more than $k$ players it is maximal, i.e. it satisfies the "$k$-converse consistency". The properties of solutions are described and their characterization in terms of balancedness is given.
Keywords: $TU$ game, prenucleolus, consistency.
Mots-clés : prekernel
@article{MGTA_2009_1_1_a2,
     author = {Ilya Katsev and Elena Yanovskaya},
     title = {Between the prekernel and the prenucleolus},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {46--66},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a2/}
}
TY  - JOUR
AU  - Ilya Katsev
AU  - Elena Yanovskaya
TI  - Between the prekernel and the prenucleolus
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 46
EP  - 66
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a2/
LA  - ru
ID  - MGTA_2009_1_1_a2
ER  - 
%0 Journal Article
%A Ilya Katsev
%A Elena Yanovskaya
%T Between the prekernel and the prenucleolus
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 46-66
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a2/
%G ru
%F MGTA_2009_1_1_a2
Ilya Katsev; Elena Yanovskaya. Between the prekernel and the prenucleolus. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 46-66. http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a2/

[1] Sobolev A. I., “Kharakterizatsiya printsipov optimalnosti v kooperativnykh igrakh posredstvom funktsionalnykh uravnenii”, Matematicheskie metody v sotsialnykh naukakh, 6, Pod red. N. N. Vorobeva, Institut fiziki i matematiki AN Litovskoi SSR, Vilnyus, 1975, 94–151

[2] Algaba E., Bilbao J. M., Borm P., López J. J., “The Myerson Value for Union Stable Structure”, Mathematical Methods of Operations Research, 54 (2001), 359–371 | DOI | MR | Zbl

[3] Algaba E., Bilbao J. M., van den Brink R., Jiménez-Losada A., “An axiomatizations of the Banzhaf value for cooperative games on antimatroids”, Mathematical Methods of Operations Research, 59 (2004), 147–166 | DOI | MR | Zbl

[4] Borm P., Owen G., Tijs S., “On the position value for communication situations”, SIAM Journal on Discrete Mathematics, 5 (1992), 305–320 | DOI | MR | Zbl

[5] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Research Logistics Quarterly, 12 (1965), 223–259 | DOI | MR | Zbl

[6] Kohlberg E., “On the nucleolus of a characteristic function game”, SIAM Journal of Applied Mathematics, 20 (1971), 62–66 | DOI | MR | Zbl

[7] Maschler M., Peleg B., Shapley L. S., “Geometric properties of the kernel, nucleolus, and related solution concepts”, Mathematics of Operations Research, 4 (1979), 303–338 | DOI | MR | Zbl

[8] Meessen R., Communication games, Master's thesis, Department of Mathematics. University of Nijmegen, The Netherlands, 1988 (in Dutch)

[9] Myerson R. B., “Graphs and cooperation in games”, Mathematics of Operations Research, 2 (1977), 225–229 | DOI | MR | Zbl

[10] Myerson R. B., “Conference structures and fair allocation rules”, International Journal of Game Theory, 9 (1980), 169–182 | DOI | MR | Zbl

[11] Orshan G., “The prenucleolus and the reduced game property: equal treatment replaces anonymity”, International Journal of Game Theory, 22 (1993), 241–248 | DOI | MR | Zbl

[12] Orshan G., Sudhölter P., “Reconfirming the prenucleolus”, Mathematics of Operations Research, 28 (2003), 283–293 | DOI | MR | Zbl

[13] Owen G., “Values of games with a priori unions”, Mathematical economics and game theory, Essays in honor of Oskar Morgenstern, Lecture Notes Econ. and Math. Syst., 141, eds. R. Henn, O. Moeschlin, Springer, Berlin, 1977, 76–88 | DOI | MR

[14] Peleg B., “On the reduced game property and its converse”, Internat. J. Game Theory, 15:3 (1987), 187–200 | DOI | MR | Zbl

[15] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal of Applied Mathematics, 17 (1969), 1163–1170 | DOI | MR | Zbl