Algorithms for Optimal Design with Application to Multiple Polynomial Regression.
Metrika, Tome 42 (1995) no. 3-4, pp. 173-190 Cet article a éte moissonné depuis la source European Digital Mathematics Library

Voir la notice de l'article

Mots-clés : optimal linear regression design, convex extremum problems, algorithm, steepest descent type algorithms, improved gradient methods, second order methods, symmetric multiple polynomial models, invariance structures, efficient exact designs, optimal approximate designs, multifactor cubic model
@article{MET_1995__42_3-4_176574,
     author = {Norbert Gaffke and Berthold Heiligers},
     title = {Algorithms for {Optimal} {Design} with {Application} to {Multiple} {Polynomial} {Regression.}},
     journal = {Metrika},
     pages = {173--190},
     year = {1995},
     volume = {42},
     number = {3-4},
     zbl = {0833.62071},
     url = {http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176574/}
}
TY  - JOUR
AU  - Norbert Gaffke
AU  - Berthold Heiligers
TI  - Algorithms for Optimal Design with Application to Multiple Polynomial Regression.
JO  - Metrika
PY  - 1995
SP  - 173
EP  - 190
VL  - 42
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176574/
ID  - MET_1995__42_3-4_176574
ER  - 
%0 Journal Article
%A Norbert Gaffke
%A Berthold Heiligers
%T Algorithms for Optimal Design with Application to Multiple Polynomial Regression.
%J Metrika
%D 1995
%P 173-190
%V 42
%N 3-4
%U http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176574/
%F MET_1995__42_3-4_176574
Norbert Gaffke; Berthold Heiligers. Algorithms for Optimal Design with Application to Multiple Polynomial Regression.. Metrika, Tome 42 (1995) no. 3-4, pp. 173-190. http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176574/